Invariance of momentum and energy conservation

laws under Galilean transformation

By
Dr. Sunil Kumar Yadav
Assistant Professor
Department of Physics
Maharaja College, Arrah
Bihar 802301, India.

Outline

(1) Galilean transformation

- Velocity addition rule

(2) Momentum Conservation

(3) Energy Conservation Principle

Galilean transformation

An event is specified by point P in the figure below.

Vectorial form : $\mathbf{x}^{\prime}=\mathbf{x}-\mathbf{u} t ; \quad t^{\prime}=t$.

Velocity addition theorem

$$
S-\text { frame }
$$

$$
v_{x}^{\prime}=v_{x}-u, \quad v_{y}^{\prime}=v_{y}, \quad v_{z}^{\prime}=v_{z},
$$

Vectorial form : $\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{u}$.

Momentum Conservation

Total momentum before collission $\left(P_{b c}\right)=$ Total momentum after collission ($P_{a c}$) -in all Inertial frame

Let us consider head-on collission of two objects along x-axis of S frame (I have taken here $1 d$ case you can generalized it to $3 d$. Use vectorial form of transformation rules)

For S frame observer:

$$
\begin{aligned}
& P_{b c}=P_{a c} \\
& m_{1} v_{1}+m_{2} v_{2}=m_{1} V_{1}+m_{2} V_{2}
\end{aligned}
$$

For S^{\prime} farme observer:
The corresponding quantities are denoted by prime on it. Note that mass is invariant for the both observers and we do not put prime on m_{1} and m_{2}.

Now apply velocity transformation rule $v_{1}^{\prime}=v_{1}-u, V_{1}^{\prime}=V_{1}-u$, etc.

$$
\begin{aligned}
& m_{1}\left(v_{1}^{\prime}+u\right)+m_{2}\left(v_{2}^{\prime}+u\right)=m_{1}\left(V_{1}^{\prime}+u\right)+m_{2}\left(V_{2}^{\prime}+u\right) \\
& m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=m_{1} V_{1}^{\prime}+m_{2} V_{2}^{\prime}
\end{aligned}
$$

Energy Conservation

Consider same example-elastic collission of two object.
For S-frame observer:

$$
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} V_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2}
$$

For S^{\prime} frame observer use velocity transformation rule

$$
\frac{1}{2} m_{1}\left(v_{1}^{\prime}+u\right)^{2}+\frac{1}{2} m_{2}\left(v_{2}^{\prime}+u\right)^{2}=\frac{1}{2} m_{1}\left(V_{1}^{\prime}+u\right)^{2}+\frac{1}{2} m_{2}\left(V_{2}^{\prime}+u\right)^{2}
$$

Or we can write

$$
\begin{aligned}
& \frac{1}{2} m_{1}\left(v_{1}^{\prime 2}+u^{2}+2 v_{1}^{\prime} u\right)+\frac{1}{2} m_{2}\left(v_{2}^{\prime 2}+u^{2}+2 v_{2}^{\prime} u\right) \\
& =\frac{1}{2} m_{1}\left(V_{1}^{\prime 2}+u^{2}+2 V_{1}^{\prime} u\right)+\frac{1}{2} m_{2}\left(V_{2}^{\prime 2}+u^{2}+2 V_{2}^{\prime} u\right) \\
& \quad \frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} v_{2}^{\prime 2}+\left(m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}\right) \\
& \quad=\frac{1}{2} m_{1} V_{1}^{\prime 2}+\frac{1}{2} m_{1} V_{2}^{\prime 2}+\left(m_{1} V_{1}^{\prime}+m_{2} V_{2}^{\prime}\right)
\end{aligned}
$$

or

$$
\frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} v_{2}^{\prime 2}=\frac{1}{2} m_{1} V_{1}^{\prime 2}+\frac{1}{2} m_{1} V_{2}^{\prime 2}
$$

Thank You

Stay Home Stay Safe

