Invariance of momentum and energy conservation laws under Galilean transformation

By

Dr. Sunil Kumar Yadav

Assistant Professor Department of Physics Maharaja College, Arrah Bihar 802301, India.

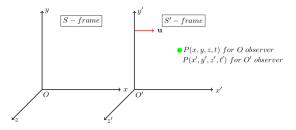
• Velocity addition rule

2 Momentum Conservation

▶ < Ξ >

S.K.Y. (Maharaja College, Ara)

An event is specified by point P in the figure below.

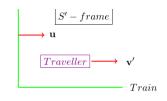


$$x' = x - ut$$
, $y' = y$, $z' = z$; $t' = t$.

Vectorial form: $\mathbf{x}' = \mathbf{x} - \mathbf{u}t$; t' = t.

S.K.Y. (Maharaja College, Ara)

Velocity addition theorem



$$v'_x = v_x - u, \quad v'_y = v_y, \quad v'_z = v_z,$$

Vectorial form : $\mathbf{v}' = \mathbf{v} - \mathbf{u}$.

★ 注 → ★ 注 →

Total momentum before collission (P_{bc})=Total momentum after collission (P_{ac}) -in all Inertial frame

Let us consider head-on collission of two objects along x-axis of S frame (I have taken here 1d case you can generalized it to 3d. Use vectorial form of transformation rules)

For S frame observer:

$$P_{bc} = P_{ac}$$
(1)
$$m_1 v_1 + m_2 v_2 = m_1 V_1 + m_2 V_2$$

- < 글 > - < 글 >

For S' farme observer:

The corresponding quantities are denoted by prime on it. Note that mass is invariant for the both observers and we do not put prime on m_1 and m_2 .

Now apply velocity transformation rule $v'_1 = v_1 - u$, $V'_1 = V_1 - u$, etc.

$$m_1(v'_1 + u) + m_2(v'_2 + u) = m_1(V'_1 + u) + m_2(V'_2 + u)$$
$$m_1v'_1 + m_2v'_2 = m_1V'_1 + m_2V'_2$$

< 注→ < 注→

Consider same example-elastic collission of two object.

For *S*-frame observer:

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2$$

For S^\prime frame observer use velocity transformation rule

$$\frac{1}{2}m_1(v_1'+u)^2 + \frac{1}{2}m_2(v_2'+u)^2 = \frac{1}{2}m_1(V_1'+u)^2 + \frac{1}{2}m_2(V_2'+u)^2$$

< 注→ < 注→

Or we can write

$$\frac{1}{2}m_1(v'_1^2 + u^2 + 2v'_1u) + \frac{1}{2}m_2(v'_2^2 + u^2 + 2v'_2u)$$

= $\frac{1}{2}m_1(V'_1^2 + u^2 + 2V'_1u) + \frac{1}{2}m_2(V'_2^2 + u^2 + 2V'_2u)$

$$\frac{1}{2}m_1v'_1^2 + \frac{1}{2}m_2v'_2^2 + (m_1v'_1 + m_2v'_2)$$

= $\frac{1}{2}m_1V'_1^2 + \frac{1}{2}m_1V'_2^2 + (m_1V'_1 + m_2V'_2)$

or

$$\frac{1}{2}m_1v'_1^2 + \frac{1}{2}m_2v'_2^2 = \frac{1}{2}m_1V'_1^2 + \frac{1}{2}m_1V'_2^2$$

≣ ► < ≣ ►

Thank You Stay Home Stay Safe

< ∃⇒

S.K.Y. (Maharaja College, Ara)

9 / 9