Quantum Mechanics-Section18

Dr. Jayanta Das

Department of Physics, Maharaja College, Ara, Bihar-802301

1 The wave function in momentum space

We have already established the wave function ψ as a function of x and t.

$$
\psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int d p \phi(p) e^{i(p x-E t) / \hbar}
$$

We can now discuss the physical significance of $\phi(p)$. It is sufficient to consider $t=0$, since $\phi(p)$ does not have any time dependence. Therefore,

$$
\psi(x)=\int d p \phi(p) e^{i p x / \hbar}
$$

By the help of inverse Fourier transform we find

$$
\phi(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int d x \psi(x) e^{-i p x / \hbar}
$$

Now,

$$
\begin{align*}
& \int d p \phi^{*}(p) \phi(p)=\int d p \phi^{*}(p) \frac{1}{\sqrt{2 \pi \hbar}} \int d x \psi(x) e^{-i p x / \hbar} \tag{1}\\
&=\int d x \psi(x) \frac{1}{\sqrt{2 \pi \hbar}} \int d p \phi^{*}(p) e^{-i p x / \hbar} \tag{2}\\
&=\int d x \psi(x) \psi^{*}(x)=1 \tag{3}
\end{align*}
$$

The result is known as Parseval's theorem, it states that if a function is normalized to 1 , so is its Fourier Transform. Consider

$$
\begin{array}{r}
<p>=\int d x \psi^{*}(x) \hat{p} \psi(x) \\
=\int d x \psi^{*}(x) \frac{\hbar}{i} \frac{\partial \psi(x)}{\partial x} \\
=\int d x \psi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \frac{1}{\sqrt{2 \pi \hbar}} \int d p \phi(p) e^{i p x / \hbar} \\
=\int d p \phi(p) p \frac{1}{\sqrt{2 \pi \hbar}} \int d x \psi^{*}(x) e^{i p x / \hbar} \\
=\int d p \phi(p) p \phi^{*}(p) \tag{8}
\end{array}
$$

This result suggests that $\phi(p)$ should be interpreted as the wave function in momentum space, with $|\phi(p)|^{2}$ yielding the probability density for finding the particle with momentum p. We may define $\phi(p, t)$ by

$$
\psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int d p \phi(p, t) e^{i p x / \hbar}
$$

Like the momentum operator $\hat{p} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x}$ in ordinary space, we may also express x as position operator in momentum space

$$
<x>=\int d p \phi^{*}(p, t)\left(i \hbar \frac{\partial}{\partial p}\right) \phi(p, t)
$$

where

$$
\hat{x} \equiv i \hbar \frac{\partial}{\partial p}
$$

References

[1] Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Authors: R. Eisberg, R. Resnick, Publisher: Wiley
[2] Quantum Physics, Author: Stephen Gasiorowicz, Publisher: John Wiley and Sons
[3] Quantum Mechanics: Theory and Applications, Authors: A. Ghatak, S. Lokanathan, Publisher: Trinity Press
[4] Modern Quantum Mechanics, Author: J.J. Sakurai, Publisher: Benjamin/Cummings Publisher.
[5] A textbook of Quantum Mechanics, Author: P M Mathews, K Venkatesan, Publisher: TMG

[^0]
[^0]: ${ }^{1}$ Figures are collected from online resources.

