The Cauchy Condensation Test (named for Augustin Louis Cauchy, 1789-1857)

The Cauchy Condensation Test (CCT) is as follows:
Suppose that $a_{n}>0$ for all $n \geq 1$ and that a_{n} is monotone decreasing. Then the series

$$
\sum a_{n} \text { and } \quad \sum 2^{n} a_{2^{n}}
$$

either both converge or both diverge.
Before proving this theorem, let us illustrate it with some examples.
Example 1: Let us use the CCT to show that the harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}$, diverges.

For this series, we have $a_{n}=1 / n$ and it is obvious that $a_{n}>0$ for all $n \geq 1$ and that a_{n} is monotone decreasing. Now notice that

$$
a_{2^{n}}=\frac{1}{2^{n}}
$$

and thus

$$
\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}=\sum_{n=0}^{\infty} 2^{n}\left(\frac{1}{2^{n}}\right)=\sum_{n=0}^{\infty} 1
$$

Since this series clearly diverges (because it is a sum of 1 s), then the series $\sum_{n=1}^{\infty} \frac{1}{n}$ also diverges by the CCT.

Example 2: Let us use the CCT to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

For this series, we have $a_{n}=1 / n^{2}$ and it is obvious that $a_{n}>0$ for all $n \geq 1$ and that a_{n} is monotone decreasing. Now notice that

$$
a_{2^{n}}=\frac{1}{\left(2^{n}\right)^{2}}=\frac{1}{2^{2 n}}=\frac{1}{4^{n}}
$$

and thus

$$
\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}=\sum_{n=0}^{\infty} 2^{n}\left(\frac{1}{4^{n}}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

Since this series converges (because it is a geometric series with $x=1 / 2$), then the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ also converges by the CCT.

Example 3: Let us use the CCT to show that the series $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$ diverges.

For this series, we have $a_{n}=\frac{1}{n \ln (n)}$ and it is obvious that $a_{n}>0$ for all $n \geq 2$ and that a_{n} is monotone decreasing. Now notice that

$$
a_{2^{n}}=\frac{1}{2^{n} \ln \left(2^{n}\right)}=\frac{1}{2^{n} n \ln (2)}
$$

and thus

$$
\sum_{n=1}^{\infty} 2^{n} a_{2^{n}}=\sum_{n=1}^{\infty} 2^{n}\left(\frac{1}{2^{n} n \ln (2)}\right)=\sum_{n=1}^{\infty} \frac{1}{\ln (2)} \cdot \frac{1}{n}
$$

Since this series clearly diverges (because $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the above series is just this series with every term multiplied by $1 / \ln (2))$, then the series $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$ also diverges by the CCT.

We will now give the proof of the CCT:
Let S_{n} be the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and let T_{n} be the sequence of partial sums of $\sum_{n=1}^{\infty} 2^{n} a_{2^{n}}$. Thus

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

for all $n \geq 1$ and

$$
T_{n}=2 a_{2}+4 a_{4}+8 a_{8}+\cdots+2^{n} a_{2^{n}}
$$

for all $n \geq 1$.
Because all of the numbers a_{n} are positive and the sequence a_{n} is monotone decreasing, notice that

$$
\begin{aligned}
2 a_{2}+T_{1} & =2 a_{2}+2 a_{2} \\
& \leq 2 a_{1}+2 a_{2} \\
& =2\left(a_{1}+a_{2}\right) \\
& =2 S_{2}
\end{aligned}
$$

This shows that $2 a_{2}+T_{1} \leq 2 S_{2}$.
Now notice that

$$
\begin{aligned}
2 a_{2}+T_{2} & =2 a_{2}+2 a_{2}+4 a_{4} \\
& =2 a_{2}+2 a_{2}+2 a_{4}+2 a_{4} \\
& \leq 2 a_{1}+2 a_{2}+2 a_{3}+2 a_{4} \\
& =2\left(a_{1}+a_{2}+a_{3}+a_{4}\right)
\end{aligned}
$$

This shows that $2 a_{2}+T_{2} \leq 2 S_{4}$.
Continuing with this type of reasoning, we can see that

$$
2 a_{2}+T_{n} \leq 2 S_{2^{n}}
$$

for all $n \geq 1$ or, equivalently, that

$$
T_{n} \leq 2 S_{2^{n}}-2 a_{2}
$$

Now suppose That $\sum a_{n}$ converges. Then $\lim _{n \rightarrow \infty} S_{n}$ exists (say that $\lim _{n \rightarrow \infty} S_{n}=L$). This means that is is also true that $\lim _{n \rightarrow \infty} S_{2^{n}}=L$ and hence that

$$
\lim _{n \rightarrow \infty}\left(2 S_{2^{n}}-2 a_{2}\right)=2 L-2 a_{2} .
$$

Therefore $T_{n} \leq 2 L-2 a_{2}$ for all $n \geq 1$. Since T_{n} is monotone increasing (because $2^{n} a_{2^{n}}>0$ for all $n \geq 1$) and T_{n} is bounded above (by $2 L-2 a_{2}$), then $\lim _{n \rightarrow \infty} T_{n}$ exists and hence $\sum 2^{n} a_{2^{n}}$ converges. We have now proved that if $\sum a_{n}$ converges, then $\sum 2^{n} a_{2^{n}}$ also converges.

To complete the proof, we must show that if $\sum a_{n}$ diverges, then $\sum 2^{n} a_{2^{n}}$ also diverges. To do this, note that

$$
\begin{aligned}
a_{1}+T_{1} & =a_{1}+2 a_{2} \\
& =a_{1}+a_{2}+a_{2} \\
& \geq a_{1}+a_{2}+a_{3} \\
& =S_{3} .
\end{aligned}
$$

This shows that $a_{1}+T_{1} \geq S_{3}$.
Next note that

$$
\begin{aligned}
a_{1}+T_{2} & =a_{1}+2 a_{2}+4 a_{4} \\
& =a_{1}+a_{2}+a_{2}+a_{4}+a_{4}+a_{4}+a_{4} \\
& \geq a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7} \\
& =S_{7} .
\end{aligned}
$$

This shows that $a_{1}+T_{2} \geq S_{7}$.
Continuing with this type of reasoning, we can in fact verify that

$$
a_{1}+T_{n} \geq S_{2^{n+1}-1}
$$

for all $n \geq 1$ or equivalently, that

$$
S_{2^{n+1}-1}-a_{1} \leq T_{n}
$$

for all $n \geq 1$.
Now suppose That $\sum a_{n}$ diverges. Then $\lim _{n \rightarrow \infty} S_{n}=\infty$ (because $a_{n}>$ 0 for all n). It follows that also $\lim _{n \rightarrow \infty} S_{2^{n+1}-1}=\infty$ and hence that $\lim _{n \rightarrow \infty}\left(S_{2^{n+1}-1}-a_{1}\right)=\infty$. By the inequality given above, we conclude that $\lim _{n \rightarrow \infty} T_{n}=\infty$ and hence that $\sum 2^{n} a_{2^{n}}$ diverges.

This completes the proof of the Cauchy Condensation Test.
Let us look at just one more example:
Example 4: Does the series $\sum_{n=2}^{\infty} \frac{1}{n \ln \left(n^{3}\right)}$ converge or diverge?
We will use the CCT to answer this question. To do this, we first observe that

$$
a_{n}=\frac{1}{n \ln \left(n^{3}\right)}>0
$$

for all $n \geq 2$ and that a_{n} is monotone decreasing (because $n \ln \left(n^{3}\right)$ is monotone increasing).

Now we observe that

$$
a_{2^{n}}=\frac{1}{2^{n} \ln \left(\left(2^{n}\right)^{3}\right)}=\frac{1}{2^{n} \ln \left(8^{n}\right)}=\frac{1}{2^{n} n \ln (8)}
$$

and hence that

$$
\sum 2^{n} a_{2^{n}}=\sum 2^{n}\left(\frac{1}{2^{n} n \ln (8)}\right)=\sum \frac{1}{\ln (8)} \cdot \frac{1}{n}
$$

Since $\sum \frac{1}{n}$ diverges, then $\sum \frac{1}{\ln (8)} \cdot \frac{1}{n}$ also diverges and we conclude that $\sum_{n=2}^{\infty} \frac{1}{n \ln \left(n^{3}\right)}$ diverges by the CCT.

