15. Graph of derivative

15.1. Two ways to interpret derivative

Two ways to interpret derivative
Relating graph of function to .
Where the derivative is undefined

The function $f(x)=x^{2}$ has derivative $f^{\prime}(x)=2 x$. This derivative is a general slope function. It gives the slope of any line tangent to the graph of f. For instance, if we want the slope of the tangent line at the point $(-2,4)$, we evaluate the derivative at the x-coordinate of this point and get $f^{\prime}(-2)=-4$. A few tangent lines are shown in the figure on the left, each tagged with its slope.

Table of Contents

4

Page 1 of 11

Print Version

Home Page

The derivative $f^{\prime}(x)=2 x$ has a second interpretation. We can forget about the original the graph is actually below the number due to the negative sign).

Taking $x=-2$ as an example, we have seen two ways to interpret $f^{\prime}(-2)$ (which equals $-4)$. On the one hand, it is the slope of the line tangent to the graph of the original function f above -2 . On the other hand, it is the height of the graph of the derivative f^{\prime} above -2 . This illustrates a general principle:

```
At any number a,
    slope of the graph of f}\mathrm{ at }a=\mathrm{ height of the graph of f}\mp@subsup{f}{}{\prime}\mathrm{ at }
Both of these quantities equal }\mp@subsup{f}{}{\prime}(a)
```

(The phrase "slope of the graph of f at a " is short for "slope of the line tangent to the graph of f at the point $(a, f(a)) . ")$

15.2. Relating graph of function to graph of derivative

We give a series of examples with the graph of a function on the left and the graph of its derivative on the right, each followed by an explanation.

Print Version

15.2.1 Example

At each x, the graph of f has slope 1 , so at each x the height of the graph of f^{\prime} is 1 as well.

15.2.2 Example

44

Page 3 of 11

Back

Print Version

Home Page

At each x, the graph of f has slope $-1 / 2$, so at each x the height of the graph of f^{\prime} is $-1 / 2$
as well.

15.2.3 Example

As indicated, the graph of f has slope 1 at $x=1$, slope 0 at $x=2$, and slope -1 at $x=3$. These slopes are the heights of the graph of f^{\prime} at $x=1, x=2$, and $x=3$, respectively.

Graph of derivative

Page 4 of 11

Back

Print Version

15.2.4 Example

To the left of 2 the graph of f has slope 1 , so, to the left of 2 the graph of f^{\prime} has height 1 . Similarly, to the right of 2 the graph of f has slope -1 , so, to the right of 2 the graph of f^{\prime} has height -1 . This leaves the behavior of f^{\prime} right at 2 to be determined. According to the definition of the derivative,

$$
\begin{equation*}
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \tag{1}
\end{equation*}
$$

provided the limit on the right-hand side of this equation exists. If the limit does not exist, then $f^{\prime}(2)$ is undefined. We show that this latter is the case by showing that the one-sided limits are not the same. First, writing the equations of the two lines that make up the graph of f we get

$$
f(x)= \begin{cases}x+1, & x \leq 2 \\ 5-x, & x \geq 2\end{cases}
$$

Table of Contents

Page 5 of 11

Back

Print Version

Therefore,

$$
\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{-}} \frac{((2+h)+1)-3}{h}=1
$$

while

$$
\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(5-(2+h))-3}{h}=-1,
$$

so the two-sided limit in (1) does not exist. We conclude that $f^{\prime}(2)$ is undefined and so we leave holes in the graph of f^{\prime} at 2 .

15.2.5 Example

Table of Contents
 left, so the height of the graph of f^{\prime} is $1 / 2$ at 1 and it gets ever greater as x approaches 2 from the left. The behavior of both graphs to the right of 2 is similar, but reversed. In this case, the two-sided limit in (1) is ∞. In particular, the limit does not exist so that $f^{\prime}(2)$ is undefined.

Page 6 of 11

15.2.6 Example

The graph of f has slope -1 to the left of 2 and slope 2 to the right of 2 , so the graph of f^{\prime} has height -1 to the left of 2 and height 2 to the right of 2 . For $x<2, f(x)=4-x$, so

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{(4-(2+h))-1}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{1-h}{h} \quad\left(\frac{\text { about } 1}{\text { small neg. }}\right) \\
& =-\infty .
\end{aligned}
$$

Therefore, the limit in (1) does not exist and $f^{\prime}(2)$ is undefined.

15.3. Where the derivative is undefined

The last three examples in the previous section illustrate the three main ways a derivative can be undefined at a number. These ways are summarized in the following statement.

Where the derivative is undefined. The derivative f^{\prime} of a function f is undefined at any number a for which $f(a)$ is undefined and also at any a for which the graph of f satisfies one of the following:

corner at a

vertical tangent at a

break at a (f discontinuous at a)

Page 8 of 11

Print Version

15-1 Sketch the graph of the derivative f^{\prime} of the function f having the pictured graph:

Table of Contents

Page 9 of 11

Back

Print Version

Home Page

15-3 Give an argument similar to that following 15.2 .6 to show that the derivative $f^{\prime}(2)$ does not exist for the function f with graph as pictured:

Table of Contents

Page 10 of 11

Back

Print Version

Home Page

15-4 Pictured is the graph of the derivative f^{\prime} of an unknown function f :

(a) Sketch the graph of f given that $f(1)=1$.
(b) Sketch the graph of f given that $f(1)=2$.
(c) Describe the graphs of all the possibilities for the function f.

Page 11 of 11

Back

Print Version

Home Page

