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“Mathematics is, in its way, the poetry of

logical ideas.”

— Albert Einstein (1879-1955)

In the earlier lecture notes, we have discussed vector integration (line integral, surface

integral and volume integral). Here we discuss divergence theorem which relates surface

integral to volume integral. In mathematical form it is written, for a vector field V, as

‹
s

V · da =

˚
v

∇ ·V dτ , (1)

which states that surface integral of the vector field V over the boundary of a closed surface

(valid for any arbitrary shape of surface) is equal to the volume integral of the divergence

of V over the enclosed volume

Proof: Let’s take right-hand side integral and expand it

˚
v

∇ ·V dτ =

˚
v

(∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

)
dx dy dz . (2)

Let us consider a cubical shape surface to prove the theorem (Fig1). Note that for sign

convention we take outward normal to a closed surface to be positive.

In the Eq. (1), da = n̂da, where n̂ is the unit outward normal to the area element da.
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FIG. 1: Cube.

The area element for all the six sides of the cube are given by

(bottom) da1 = −k dx dy,

(front) da2 = i dy dz,

(left) da3 = −j dx dz,

(back) da4 = −i dy dz,

(top) da5 = k dx dy,

(right) da6 = j dx dz

Now let us integrate the last term on the rhs of Eq. (1) w.r.t. z from z′ to z′′.

˚ z′′

z′

∂Vz
∂z

dx dy dz =

¨
a

(Vz(x, y, z
′′)− Vz(x, y, z′)) dx dy

=

¨
a5

Vz(x, y, z
′′) dx dy −

¨
a1

Vz(x, y, z
′) dx dy.

Here for the bottom and top sides we have respectively n̂1 ·k da1 = −dx dy and n̂5 ·k da5 =

dx dy. Now using these expressions in the above Eq. (3) we obtain

˚ z′′

z′

∂Vz
∂z

dx dy dz =

¨
a5

Vz(x, y, z
′′)n̂5 · k da5 +

¨
a1

Vz(x, y, z
′)n̂1 · k da1

=

‹
a

Vzk · n̂da . (3)
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The contribution from the other sides are taken to be zero since k is perpendicular to surface

elements da2, da3, da4 and da6. Next, using the similar argument we can write

˚
v

∂Vx
∂x

dτ =

‹
a

Vxi · n̂da , (4)

and ˚
v

∂Vy
∂y

dτ =

‹
a

Vyk · n̂da . (5)

Now using Eqs. (3), (4) and (5), we can write

‹
s

V · da =

˚
v

∇ ·V dτ . (6)
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