General Organic Chemistry
Molecular orbitals in organic Chemistry:-
$\frac{\frac{\sigma^{*}}{\pi^{*}}}{\frac{n b}{\pi}}$

Lowest unoccupied molecular orbital

HOMO Highest occupied molecular orbital

For $\mathrm{ex}-\mathrm{H}_{3} \mathrm{C}-\ddot{O} \mathrm{H}$; in $\mathrm{C}-0$ bond, there is no π bond. But 'o'has lone

$$
\begin{aligned}
& \text { م } \\
& \text { nb N HOMO } \\
& \sigma \text { 隹 }
\end{aligned}
$$

For example, inc =0 bond

\rightarrow Electrons are always transferred from HOMO of one molecule to LUMO of another. For ex - in reaction shown below:-
 e^{-}are transferred from $n b(p)$ orbitals of oxygen atom (HOMO) to σ^{*} orbital of $\mathrm{C}-\mathrm{Cl}$ bond. (LUMO)
\rightarrow HOMO: Highest energy level of atom/ion/molecule in which electrons are present.
\rightarrow LUMO: Lowest energy level of atom/ion/molecule in which there are no electrons.

\# Donor ability/nucleophilicity:-
Ability of an electronic species to donate electrons from it's HOMO.

- energy levels of atom:- $s<p<d<f$
- energy levels of molecule:- $\sigma<\pi<n b<\pi^{*}<\sigma^{*}$
- energy levels of hybridized atom:- $p<s p<s p^{2}<s p^{3}<s$

Que. Predict donor ability

- (1) ${ }^{-} \mathrm{CH}_{3}$
- (1) CH_{3}
- (I) $: \mathrm{NH}_{3}$
(2) $\mathrm{HC}_{5 \mathrm{C}^{2}}^{\mathrm{C}}=\mathrm{CH}_{2}$

(2) $\overline{\mathrm{N}} \mathrm{H}_{2}$
donor ability $=172$ [electronegativity]
(2) $: \bar{N} H_{2}$ donor ability $=2>1$ [additional e^{-}charge]

donor ability $=1<2<3$ [s-character α bond angle]
(3)

(3)
(2)

(2)
(1) donor ability $=1<2$ $\begin{array}{cc}{\left[\begin{array}{l}\text { bond angle } \alpha \\ \text { inside ring } \\ \text { inside ring }\end{array}\right.} & \left.\begin{array}{c}\text { inc ter }\end{array}\right]\end{array}$
- (1)

(2) \square

$$
\text { donor ability }=2<1\left[\begin{array}{l}
\text { bond angle } \alpha \text { s-character } \\
\text { outside ring } \\
\text { outside ring }
\end{array}\right]
$$

(1)

(2)

GIISHSTBY
lone pairs of N atom have more s-character
ChemContent in (2) due to a larger bond angle. Hence,
\# Factors affecting Nucleophilicity:-

1. Electronegativity:
donor ability $\alpha \frac{1}{\text { electronegativity }}$
ex- $\mathrm{NH}_{3}>\mathrm{OH}_{2}>\mathrm{FH}$
2. Size of donor atom:
donor ability α atomic size

$$
\text { ex - } \mathrm{OH}_{2}<\mathrm{SH}_{2}<\mathrm{SeH}_{2}<\mathrm{TeH}_{2}<\mathrm{POH}_{2}
$$

3. Charge on donor atom:-

$$
\begin{gathered}
\text { donor ability } \alpha \text { extra negative } \propto \frac{1}{\text { charge }}
\end{gathered}
$$

$\mathrm{ex}-: \mathrm{OH}_{2}<: \overline{\mathrm{OH}}<\mathrm{O}^{2-}$;
$\mathrm{ex}-\mathrm{O}=\mathrm{C}=>\mathrm{H}-\stackrel{\oplus}{\mathrm{O}}=\mathrm{C}$
4. Alpha α-effect:-
presence of a heteroatom adjacent to the donor atom increases the donor ability.

$$
\text { ex- } \mathrm{H}_{2} \ddot{\mathrm{~N}}-\ddot{\mathrm{O}} \mathrm{H}>\mathrm{H}_{2} \tilde{\mathrm{~N}}-\mathrm{CH}_{3}
$$

ChemContent
\# Hard \& Soft Nucleophile:-
(i)

Size
(ii) - charge density
(iii) electronegativity
(iv) attack on α, β unsaturated carbonyl
(v) examples

Hard Nucleophile
small
high
high

$$
\mathrm{F}^{-}, \mathrm{Cl}^{-}, \overline{\mathrm{O}} \mathrm{H}, \overline{\mathrm{~N}} \mathrm{H}_{2}
$$

Soft Nucleophile
large
low
low

Nusoft

$$
-\mathrm{SH}, \overline{\mathrm{P}}_{2},-\mathrm{Br},-\mathrm{I}
$$

Nucleophilicity \& Basicity
Basicity is just nucleophilicity but for a proton.

* Some molecules/ions can act as base as well as nudeophile. For ex- $\bar{O} H$.
* A nucleophile $R M g \times(\bar{R})$ can also act as a base if acidic hydrogen is present.

Electronic effects: - Inductive effect

- Mesmeric effect
- Resonance effect
- Hyperconiugation
- Electromeric effect
- Cross conjugation

Directing Effects of groups:

1. -OH group is or tho \& para directing by resonance (IM)

2. $-\mathrm{OCH}_{3}$ group is orthof para directing by resonance (+M)

3. $-\mathrm{NO}_{2}$ group is meta directing by resonance ($-M$)

O atom in OCH_{3} has more s-character because of more bond angle. Hence, donation of e^{-}is comparatively hard. $\mathrm{So}, \mathrm{O} \mathrm{CH}_{3}$ is less directing as compared to OH group.

