Aromatic Substitution, Addition, and Elimination Reactions

- 1. Aromatic Substitution Reactions
- a. Electrophilic Aromatic Substitution (EAS)
- Electrophile replaces hydrogen on aromatic ring.
- Examples: Nitration, Halogenation, Sulfonation, Friedel-Crafts.
- Steps: Electrophile formation, attack on ring, deprotonation.
- b. Nucleophilic Aromatic Substitution (NAS)
- Nucleophile replaces leaving group (halide) on ring.
- Needs electron-withdrawing groups (EWGs) ortho/para.
- Mechanisms: Addition-Elimination (Meisenheimer), Elimination-Addition (Benzyne).
- c. Benzyne Mechanism
- Strong base forms benzyne intermediate -> nucleophile attacks.
- Example: Aniline from chlorobenzene + NaNH.
- d. Radical Substitution of Arenes
- Involves free radicals (light/heat).
- Example: Benzene -> Chlorobenzene (Cl, hv).
- 2. Nucleophilic Substitution at Saturated Carbon
- a. SN1 (Unimolecular)
- 2-step, carbocation intermediate, tertiary carbon preferred.
- Polar protic solvents, weak nucleophiles.

- b. SN2 (Bimolecular)
- One-step, backside attack, inversion of configuration.
- Favored by methyl/primary halides, strong nucleophiles.
- c. SNi (Substitution Nucleophilic Internal)
- Retention of configuration, e.g., alcohols with HCl.

Factors:

- Structure: More branched -> SN1.
- Nucleophile: Strong -> SN2.
- Leaving group: Better LG favors reaction.
- Solvent: Protic = SN1, Aprotic = SN2.
- 3. Addition Reactions
- a. Electrophilic Addition (Alkenes/Alkynes)
- Markovnikov's rule: H adds to C with more H.
- Example: HBr to alkene.
- b. Nucleophilic Addition (Carbonyls)
- Example: Aldehyde + NaBH -> alcohol.
- c. Free Radical Addition
- Anti-Markovnikov HBr in presence of peroxides.

4. Elimination Reactions

- Competes with SN1.
b. E2 (Bimolecular)
- One-step, strong base, antiperiplanar transition.
- Follows Zaitsevs Rule.
c. E1CB (Conjugate Base)
- Carbanion intermediate, stabilized by EWG.
5. Elimination vs Substitution
Condition Substitution (SN1/SN2) Elimination (E1/E2)
Strong base Favors E2
Weak nucleophile/base Favors SN1/E1
High temperature Favors elimination
Steric hindrance Favors E1/E2 over SN2
Solvent type Polar protic = SN1/E1 Aprotic = SN2

a. E1 (Unimolecular)

- Carbocation intermediate, tertiary carbon, heat.