Detailed Notes on Polymers

1. Types of Polymers

- (a) Based on Source
 - Natural Polymers: cellulose, starch, proteins, rubber.
 - Synthetic Polymers: polyethylene, polystyrene, nylon.
 - Semi-synthetic Polymers: rayon, cellulose acetate.
- (b) Based on Structure
 - Linear Polymers: polyethylene, PVC.
 - Branched Polymers: low-density polyethylene.
 - Cross-linked Polymers: bakelite, vulcanized rubber.
- (c) Based on Polymerization Mechanism
 - Addition Polymers: polyethylene, polystyrene.
 - Condensation Polymers: nylon, polyester.
- (d) Based on Molecular Forces
 - Elastomers: weak forces, highly elastic (rubber).
 - Fibres: strong H-bonds (nylon, polyester).
 - Thermoplastics: soften on heating (PVC, polystyrene).
 - Thermosetting plastics: harden irreversibly (bakelite).

2. Kinetics and Mechanisms of Polymerization

(a) Addition (Chain-growth) Polymerization

Occurs via free radical, ionic, or coordination mechanisms.

1. Free Radical Polymerization → Initiation, Propagation, Termination.

Rate Equation: $Rp = kp [M][R \cdot]$

2. Ionic Polymerization → Cationic (BF3, AlCl3), Anionic (BuLi).

Living polymerization (fast propagation, rare termination).

3. Coordination (Ziegler–Natta) Polymerization \rightarrow TiCl4 + AIEt3. Stereoregular polymers.

(b) Step-growth (Condensation) Polymerization

Reaction of multifunctional monomers.

Example: nylon-6,6 from adipic acid + hexamethylenediamine.

Rate decreases as molecular weight increases.

3. Molecular Mass of Polymers

1. Number Average Molecular Mass:

Mn = Σ NiMi / Σ Ni (measured by osmometry).

2. Weight Average Molecular Mass:

 $Mw = \Sigma NiMi^2 / \Sigma NiMi$ (measured by light scattering).

3. Polydispersity Index (PDI): Mw / Mn (synthetic polymers PDI > 1).

4. Methods of Molecular Mass Determination

- Osmometry: based on osmotic pressure, $\pi = cRT/M$.
- Viscosity Method: Mark–Houwink equation \rightarrow [η] = K M^a.
- Light Scattering: scattered intensity ∞ Mw.