Cyclic Hydrocarbons and their Halogen Derivatives

1. Cyclic Hydrocarbons

Definition: Cyclic hydrocarbons are organic compounds in which the carbon atoms are linked to form one or more rings (closed chains). They are different from open-chain (acyclic) hydrocarbons.

Types:

- 1. Alicyclic hydrocarbons (non-aromatic): Rings resemble alkanes, alkenes, or alkynes but are non-aromatic. Examples: cyclohexane, cyclopentene.
- 2. Aromatic hydrocarbons: Contain conjugated π -electrons and follow Huckel's rule (4n+2 π -electrons). Examples: benzene, naphthalene.

2. Halogen Derivatives of Cyclic Hydrocarbons

When one or more hydrogen atoms in a cyclic hydrocarbon are replaced by halogen atoms (F, Cl, Br, I), we get halogen derivatives.

(a) From Alicyclic hydrocarbons:

- General formula similar to haloalkanes but ring-shaped.
- Example: Cyclohexane \to Chlorocyclohexane (by chlorination), Cyclopentane \to

Bromocyclopentane

Reaction: CnH2n + X2 → CnH2n-1X + HX

(b) From Aromatic hydrocarbons:

- Called aryl halides (if halogen directly bonded to the aromatic ring).
- Example: Benzene \rightarrow Chlorobenzene, Bromobenzene.

Preparation: By direct halogenation in presence of a catalyst (FeCl3, AlCl3).

Reaction: C6H6 + Cl2 → C6H5Cl + HCl

Types of derivatives: Monohalogen derivatives (Chlorobenzene, Bromobenzene); Polyhalogen derivatives (p-Dichlorobenzene, Hexachlorobenzene).

(c) General Properties:

- Physical: Insoluble in water, soluble in organic solvents, volatile liquids or crystalline solids.
- Chemical: Alicyclic halides behave like haloalkanes (nucleophilic substitution). Aromatic halides are less reactive towards nucleophilic substitution due to resonance but undergo electrophilic substitution.

Summary:

Cyclic hydrocarbons are hydrocarbons with carbon atoms arranged in rings. Their halogen derivatives are formed when hydrogen atoms are substituted by halogens. From alicyclic compounds \rightarrow halo-cycloalkanes. From aromatic compounds \rightarrow aryl halides (like chlorobenzene).