irreplaceable role in sustaining the on .

19.2 PRECIPITATION

Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined as the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Precipitation is a fundamental atmospheric process defined at the falling of water from Pr Precipitation is a fundamental atmospheric process deller from It is a key component of water between the atmosphere, land, and of the land, a atmosphere to the Earth's surface in either liquid of some atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere, land, and of hydrological cycle, enabling the movement of water between the atmosphere at the land, and of hydrological cycle, enabling the movement of water between the atmosphere at the land, and of hydrological cycle, enabling the movement of water between the atmosphere at the land, and of hydrological cycle, enabling the movement of water between the land, and of hydrological cycle, enabling the movement of water between the land, and of hydrological cycle, enabling the movement of water between the land, and of hydrological cycle, enabling the movement of the land, and of hydrological cycle, enabling the movement of the land, and of hydrological cycle, enabling the movement of the land, and of hydrological cycle, enabling the land, and hydrological cycle, ena hydrological cycle, enabling the movement of water oct.

hydrological cycle, enabling the movement oct.

hyd Precipitation not only replenishes freshwater source management. It occurs regulation, agriculture, ecosystem dynamics, and water resource management. It occurs who regulation, agriculture, ecosystem dynamics, and water resource management. It occurs who regulation and the subregulation, agriculture, ecosystem dynamics, and water regulation, agriculture, ecosystem dynamics, and water regulation and the subsequence of t moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point, reaching moisture-laden air masses cool below the dew point air masses cool below the dew poi air, falling as rain, snow, hail, sleet, or other forms.

Types of Precipitation and Their Characteristics

Precipitation can be broadly classified into three types based on the mechanism atmospheric lifting: convectional, orographic, and frontal precipitation.

- 1. Convectional Precipitation occurs when surface air is heated by the sun, causing it rise due to decreased density. As the warm, moist air ascends, it cools adiabatically, and water vapor condenses around atmospheric particles (condensation nuclei) to form clouds This leads to heavy and sudden rainfall—commonly in the form of showers, hail, or snow pellets. This type of precipitation is frequent in tropical and equatorial regions where intense solar heating promotes vertical convection.
- 2. Orographic Precipitation results from the uplift of air masses over topographical barriers like mountains. Moist air is forced to ascend along the windward slope, cools and precipitates. The leeward side often receives much less rain and can develop into a rain shadow region. This type is common in mountainous areas and is critical for maintaining river flows and water supplies in such terrains.
- 3. Frontal Precipitation occurs when two air masses of contrasting temperatures and densities meet-typically a warm air mass and a cold air mass. The warmer, lighter air rises over the denser cold air, cools, and condenses to produce precipitation. This is a common phenomenon in temperate latitudes and is usually associated with weather fronts and cyclonic activity.

Precipitation is a crucial stage in the hydrological (water) cycle, which comprises evaporation, condensation, and precipitation. This continuous cycle maintains the Earth's water balance and supports all forms of life.

• Evaporation: The majority of atmospheric moisture (about 99%) originates from oceans, with minor contributions from land surfaces and plant transpiration. Heat from the sun causes surface water to convert into vapor.

- . Condensation: As moist air rises, it cools and condenses into water droplets or ice crystals, forming clouds. This requires condensation nuclei such as dust or smoke particles.
- **Precipitation:** When the cloud particles grow large enough (due to coalescence or ice crystal formation), they overcome atmospheric resistance and fall to Earth as rain, snow, or other forms depending on temperature and atmospheric conditions.