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Brownian motion describes the erratic motion of a big particle suspended in fluids. Ir-

regular or erratic motion of the big particle (which we call as Brownian particle) is due

to the continuous random collision of surrounding fluid particles. Theoretical explation of

Brownian motion was pioneered by Einstein and Smoluchowsky and latter it was developed

by Langevin and others. Here we discuss the Langevin approach of Brownian motion.

I. LANGEVIN DESCRIPTION

To write down the Langevin equation for Brownian particle, we consider that mass of

Brownian particle is m, and velocity is denoted by u(t) at time t. The force acting on the

Brownian particle is assumed to be given by sum of two terms. The first term is frictional

force which is proportional to the velocity and acts on opposite direction. This term is

deterministic part of the equation. The second term is the stochastic or random force ξ(t).

The stochastic force results due to the random collision of surrounding particle. Now we

write down the Langevin equation:

m
du

dt
= −ζ0u+ ξ(t). (1)

In the above equation we have ignored the effect of interaction field term which is also a

deterministic part of the equation.The above equation is in the form of first order ordinary

differential equation. Next, to solve Eq. (1), we multiply both sides of the equation with

the factor eζ0t and write it as (For simplicity we take mass m = 1)

d

dt
(u(t)eζ0t) = eζ0tξ(t). (2)

Integrating the above equation from t0 to t we obtain:

u(t)eζ0t = u0e
ζ0t0 +

∫ t

t0

eζ0τξ(τ), (3)
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where we take initial value of velocity u(t0) = u0. We write Eq. (3) for the velocity of the

particle as

u(t) = u0e
−ζ0(t−t0) +

∫ t

t0

e−ζ0(t−τ)ξ(τ). (4)

To proceed further, we assume, on the basis of the nature of random force (or noise), that

noise does not create any net force. Therefore, we wite

〈ξ(t)〉 = 0. (5)

Using the above assumption, the average velocity of the particle is obtained as

〈u(t)〉 = 〈u0〉e−ζ0(t−t0). (6)

Average velocity at time t decays exponentially from its initial value. The initial directions

of the velocity in thermal equilibrium is randomly distributed, i.e., 〈u0〉 = 0. Therefore the

average velocity, 〈u(t)〉 = 0, for all times. This implies that in thermal equilibrium, there is

no net motion for a collection of Brownian particles.

Next to compute the velocity autocorrelation function defined by, C(t, t′) = 〈u(t)u(t′)〉,

we need to identify the correlation of noise at different times. In the description of Brownian

motion, we assume that fluctuating force or noise varies very fast in short time interval in

comparison to the velocity of the Brownian particle. In the simplest form, we consider delta

correlated white noise defined by

〈ξ(t)ξ(t′)〉 = D̄δ(t− t′), (7)

where D̄ is a constant to be determined. Further, we consider that random force ξ(t) does

not affect the velocity u(t′) of the Brownian particle, where t > t′, which is the causality

condition. Thus we write

〈ξ(t)u(t′)〉 = 0. (8)

The velocity correlation function at two different time is given by

C(t, t′) = 〈v20〉e−ζ0(t−t
′−2t0)

+

∫ t

t0

dτ

∫ t′

t0

dτ ′e−ζ0(t−τ)e−ζ0(t
′−τ ′)〈ξ(τ)xi(τ ′)〉. (9)

Using Eq. (7) we obtain

C(t, t′) = C(t0, t0)e
−ζ0(t−t′−2t0)

+D̄

∫ t

t0

dτ

∫ t′

t0

dτ ′e−ζ0(t−τ)e−ζ0(t
′−τ ′)δ(τ − τ ′), (10)
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evaluating the τ, τ ′ intergal(evaluation is done in Appendix A), we obtain the following

reation

C(t, t′) =
D̄

2ζ0
e−ζ0|t−t

′| + e−ζ0(t+t
′−2t0)

[
C(t0, t0)−

D̄

2ζ0

]
. (11)

If we assume that Brownian particle system is in equilibrium at temperature T , initial

velocity distribution follow Maxwell-Boltzmann statistics. Thus we obtain the equal time

velocity-correlation function as

C(t0, t0) = 〈v20〉 = kBT, (12)

where mass m is taken to be unity. To obtain the equal time velocity correlation, we write

Eq. (11) for the case t = t′ as

C(t, t) =
D̄

2ζ0
+ e−2ζ0(t−t0)

[
kBT −

D̄

2ζ0

]
. (13)

In equilibrium state, C(t, t) should be time independent satisfying the following condition

kBT −
D̄

2ζ0
= 0. (14)

Using the above condition we obtain D̄ as

D̄ = 2ζ0kBT. (15)

Therefore noise correlation (7), using the relation (15), is given by

〈ξ(t)ξ(t′)〉 = 2ζ0kBTδ(t− t′). (16)

In the long time limit (for large t and t′), Brownian particle equilibrates at temperature

T and Eq. (11) becomes independent of the initial time t0 giving the following relation for

the velocity autocorrelation function as

C(t, t′) = kBTe
−ζ0|t−t′|. (17)

The above equation depends on time difference between t and t′ and hence is time translation

invariant.
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II. THE ROOT MEAN SQUARE DISPLACEMENT AND STOKES-EINSTEIN

RELATION

The root mean square (rms) displacement of the Brownian particle can be obtained by

integrating the velocity correlation function defined in Eq. (17) with respect to time. Now

using the definition of velocity u = dx/dt, we write Eq. (17) in the following form〈
d

dt
x(t)

d

dt′
x(t′)

〉
= kBTe

−ζ0|t−t′|. (18)

Next, we Integrate the above equation at time t and t′ obtaining the following relation

〈∆(t)∆(t′)〉 = kBT

∫ t

t0

dτ

∫ t′

t0

dτ ′e−ζ0|τ−τ
′| , (19)

where we have defined ∆(t) = (x(t) − x(t0)). Integral on the right hand side of the above

equation is evaluated in the Appendix A, we obtain rms displacement of the particle as

〈∆(t)∆(t′)〉 = kBTζ
−1
0

[
t+ t′ − |t− t′| − 2t0 +

ζ−10

(
e−ζ0(t−t0) + e−ζ0(t

′−t0) − e−ζ0(t′−t) − 1
)]

. (20)

For the equal time case t = t′, we obtain

〈∆2(t)〉 = 2kBTζ
−1
0

[
t− t0ζ−10

(
e−ζ0(t−t0) − 1

)]
. (21)

Now we discuss two limiting cases of the above equation:

Case-I: Assume the very short time such that ζ−10 (t− t0)� 1, the rms displacement of the

particle is obtained as

〈(x(t)− x(t0))
2〉1/2 = (kBT )1/2(t− t0) = u0(t− t0). (22)

The above relation shows that the rms displacement is linearly proportional to time. This

implies that at very short times of motion of the particle corresponds to free particle behavior.

Case-II: Next, if we take long-time limit such that ζ−10 (t− t0)� 1, we obtain

〈(x(t)− x(t0))
2〉 = 2kBTζ

−1
0 (t− t0) = 2D0(t− t0), (23)

which indicates that the mean square displacement has linear dependence with time. We

call this the Einstein relation. The relation between diffusion coefficient D0 and frictional
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coefficient ζ0 is given asD0 = kBTζ
−1
0 . Now using Stokes’ law ζ0 = 6πrη0, where r is the

radius of the Brownian particle and η0 is the shear viscosity of the surrounding liquid, we

obtain the relation between viscosity and the diffusion coefficient D0 as

D0 =
kBT

6πrη
, (24)

which is termed as the Stokes-Einstein relation.This relation indicates that Diffusion coeffi-

cient D̄ and the viscosity η0 are inversely proportional to each other. .
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Appendix A: velocity-correlation integral evaluation

We evaluate here the integral (here we denote it by φB) in the Eq. (9).

φB = D̄

∫ t

t0

dτ

∫ t′

t0

dτ ′e−ζ0(t−τ)e−ζ0(t
′−τ ′)δ(τ − τ ′)

= D̄

{
θ(t− t′)

∫ t′

t0

dτ ′e−ζ0(t+t
′−2τ ′) + θ(t′ − t)

∫ t

t0

dτe−ζ0(t+t
′−2τ)

}

=
D̄

2ζ0
e−ζ0(t+t

′)
{
θ(t− t′)(e2ζ0t′ − e2ζ0t0) + θ(t′ − t)(e2ζ0t − e2ζ0t0)

}
=

D̄

2ζ0

{
eζ0|t−t

′|) + e−ζ0(t+t
′−2t0)

}
. (A1)

Here θ(t) the Heaviside step function.

Next, we take the integral defined in Eq. (19)

〈∆(t)∆(t′)〉 =

∫ t

t0

dτ

∫ t′

t0

dτ ′e−ζ0|τ−τ
′|

= θ(t− t′)
∫ t′

t0

dτ

{∫ τ

t0

dτ ′e−ζ0(τ−τ
′) +

∫ t

τ

dτ ′e−ζ0(τ
′−τ)

}

+θ(t′ − t)
∫ t

t0

dτ

{∫ τ

t0

dτ ′e−ζ0(τ−τ
′) +

∫ t′

τ

dτ ′e−ζ0(τ
′−τ)

}
= θ(t− t′)

[
ζ−10

{
e−ζ0(t−t0) + e−ζ0(t

′−t0) − eζ0|t−t′|) − 1
}

+ 2(t′ − t0)
]

+θ(t′ − t)
[
ζ−10

{
e−ζ0(t−t0) + e−ζ0(t

′−t0) − eζ0|t′−t|) − 1
}

+ 2(t− t0)
]

= 2t′θ(t− t′) + 2tθ(t′ − t)− 2t0

+ζ−10

{
e−ζ0(t−t0) + e−ζ0(t

′−t0) − eζ0|t′−t|) − 1
}

= (t+ t′ − |t− t′| − 2t0)

+ζ−10

(
e−ζ0(t−t0) + e−ζ0(t

′−t0) − e−ζ0(t′−t) − 1
)

(A2)
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