
PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

Programming

In Java (5BCA3)

BCA Fifth SemesteR

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

INTRODUCTION OF OBJECT ORIENTED PROGRAMMING

Object – Oriented Programming is an approach to program organization and development, which

attempts to eliminate some of the pitfalls of conventional programming methods by incorporating the

best of structured programming features with several new concepts. Object Oriented Programming has

following features.

• Objects and Classes

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

Objects and Classes

Objects are the basic runtime entities in an object-­­oriented system. They may represent any real world

entity or may implement abstract concepts. These objects are created by using classes, a user

defined data type.

Data abstraction and encapsulation

Abstraction is the process of identifying the essential features of an object. Encapsulation is the

process of wrapping up of data and methods into a single unit. Encapsulation is also referred as data

hiding or information hiding.

Inheritance

Inheritance is the process of creating new classes from the existing classes. Inheritance supports the

concept of hierarchical classification of classes. It also implements the concept of reusability that is

the regarded as the key concept of Object – Oriented Programming.

Polymorphism

Polymorphism is the another important Object-­­Oriented Programming concept. Polymorphism

means the ability to take more than one from. Polymorphism is associated with dynamic binding that

refers to the linking of a procedure call to the code in run time execution.

Features of Java

Java is a pure object – oriented programming language. It has the following features.

• Object -­­ Oriented

• Simple

• Safe

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

• Multi-­­Threaded

• Platform Independent

• Garbage Collector

• Dynamic and Robust

Java is Object – Oriented

Object oriented programming is the catch phrase of computer programming in the 1990's. Although

object oriented programming has been around in one form or another since the Simula language was

invented in the 1960's, it's really begun to take hold in modern GUI environments like Windows,

Motif and the Mac. In object-­­oriented programs data is represented by objects. Objects have two

sections, fields (instance variables) and methods. Fields tell you what an object is. Methods tell you

what an object does. These fields and methods are closely tied to the object's real world

characteristics and behaviour. When a program is run messages are passed back and forth between

objects. When an object receives a message it responds accordingly as defined by its methods. Object

oriented programming is alleged to have a number of advantages including:

• Simpler, easier to read programs

• More efficient reuse of code

• Faster time to market

• More robust, error-­­free code

Java is Simple

Java was designed to make it much easier to write bug free code. According to Sun's Bill Joy, shipping

C code has, on average, one bug per 55 lines of code. The most important part of helping

programmers write bug-­­free code is keeping the language simple. Java has the bare bones functionality

needed to implement its rich feature set. It does not add lots of syntactic sugar or unnecessary

features. Despite its simplicity Java has considerably more functionality than C, primarily because of

the large class library. Because Java is simple, it is easy to read and write.

Obfuscated Java isn't nearly as common as obfuscated C. There aren't a lot of special cases or tricks

that will confuse beginners.

About half of the bugs in C and C++ programs are related to memory allocation and deallocation.

Therefore the second important addition Java makes to providing bug-­­free code is automatic memory

allocation and de-­­allocation. The C library memory allocation functions malloc() and free() are gone as

are C++'s destructors.

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

Java is an excellent teaching language, and an excellent choice with which to learn programming. The

language is small so it's easy to become fluent. The language is interpreted so the compile-­­run-­­link

cycle is much shorter. The runtime environment provides automatic memory allocation and garbage

collection so there's less for the programmer to think about. Java is object-­­oriented unlike Basic so

the beginning programmer doesn't have to unlearn bad programming habits when moving into real

world projects. Finally, it's very difficult (if not quite impossible) to write a Java program that will

crash your system, something that you can't say about any other language.

Java is Safe

Java was designed from the ground up to allow for secure execution of code across a network, even

when the source of that code was untrusted and possibly malicious. This required the elimination of

many features of C and C++. Most notably there are no pointers in Java. Java programs cannot access

arbitrary addresses in memory. All memory access is handled behind the scenes by the (presumably)

trusted runtime environment. Furthermore Java has strong typing. Variables must be declared, and

variables do not change types when you aren't looking. Casts are strictly limited to casts between

types that make sense. Thus you can cast an int to a long or a byte to a short but not a long to a

Boolean or an int to a String.

Java implements a robust exception handling mechanism to deal with both expected and unexpected

errors. The worst that an applet can do to a host system is bring down the runtime environment. It

cannot bring down the entire system.

Most importantly Java applets can be executed in an environment that prohibits them from

introducing viruses, deleting or modifying files, or otherwise destroying data and crashing the host

computer. A Java enabled web browser checks the byte codes of an applet to verify that it doesn't do

anything nasty before it will run the applet.

However the biggest security problem is not hackers. It's not viruses. It's not even insiders erasing

their hard drives and quitting your company to go to work for your competitors. No, the biggest

security issue in computing today is bugs. Regular, ordinary, non-­­malicious unintended bugs are

responsible for more data loss and lost productivity than all other factors combined. Java, by making

it easier to write bug-­­free code, substantially improves the security of all kinds of programs.

Java is Multi-­­ threaded

Java is inherently multi-­­threaded. A single Java program can have many different threads executing

independently and continuously. Three Java applets on the same page can run together with each

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

getting equal time from the CPU with very little extra effort on the part of the programmer. This

makes Java very responsive to user input. It also helps to contribute to Java's robustness and provides

a mechanism whereby the Java environment can ensure that a malicious applet doesn't steal all of the

host's CPU cycles.

Unfortunately multithreading is so tightly integrated with Java, that it makes Java rather difficult to

port to architectures like Windows 3.1 or the PowerMac that don't natively support preemptive multi-­­

threading. There is a cost associated with multi-­­threading. Multi-­­threading is to Java what pointer

arithmetic is to C, that is, a source of devilishly hard to find bugs.

Java is Platform Independent

Java was designed to not only be cross-­­platform in source form like C, but also in compiled binary

form. Since this is frankly impossible across processor architectures Java is compiled to an

intermediate form called byte-­­code. A Java program never really executes natively on the host

machine. Rather a special native program called the Java interpreter reads the byte code and executes

the corresponding native machine instructions. Thus to port Java programs to a new platform all that

is needed is to port the interpreter and some of the library routines. Even the compiler is written in

Java. The byte codes are precisely defined, and remain the same on all platforms.

The second important part of making Java cross-­­platform is the elimination of undefined or

architecture dependent constructs. Integers are always four bytes long, and floating point variables

follow the IEEE 754 standard for computer arithmetic exactly. You don't have to worry that the

meaning of an integer is going to change if you move from a Pentium to a PowerPC. In Java everything

is guaranteed.

However the virtual machine itself and some parts of the class library must be written in native code.

These are not always as easy or as quick to port as pure Java programs. This is why for example,

there's not yet a version of Java 1.2 for the Mac.

Java is Garbage Collector

You do not need to explicitly allocate or deallocate memory in Java. Memory is allocated as needed,

both on the stack and the heap, and reclaimed by the garbage collector when it is no longer needed.

There's no malloc(), free(), or destructor methods. There are constructors and these do allocate

memory on the heap, but this is transparent to the programmer. Most Java virtual machines use an

inefficient, mark and sweep garbage collector.

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

Java is Dynamic and extensive

Java does not have an explicit link phase. Java source code is divided into .java files, roughly one per

each class in your program. The compiler compiles these into class files containing byte code. Each

java file generally produces exactly one class file.

The compiler searches the current directory and directories specified in the CLASSPATH

environment variable to find other classes explicitly referenced by name in each source code file. If

the file you're compiling depends on other, non-­­compiled files the compiler will try to find them and

compile them as well. The compiler is quite smart, and can handle circular dependencies as well as

methods that are used before they're declared. It also can determine whether a source code file has

changed since the last time it was compiled.

More importantly, classes that were unknown to a program when it was compiled can still be loaded

into it at runtime. For example, a web browser can load applets of differing classes that it's never seen

before without recompilation.

Furthermore, Java class files tend to be quite small, a few kilobytes at most. It is not necessary to link in

large runtime libraries to produce a (non-­­native) executable. Instead the necessary classes are

loaded from the user's CLASSPATH.

PROGRAMMING IN JAVA(3BCA3)

STUDY MATERIAL OF DEPARTMENT OF B.C.A., MAHARAJA COLLEGE, ARA

INTERFACE
Introduction

Inheritance is another key technology in object-­­oriented programming. It is a form of software

reusability in which new classes are created from existing classes by absorbing their attributes and

behaviors and embellishing these with capabilities the new classes require. Software reusability

saves time in program development. It encourages reuse of proven and debugged high quality

software, thus reducing problems after a system becomes operational.

extends and super keyword

When creating a new class, instead of writing completely new instance variables and instance

methods, the programmer can designate that the new class is to inherit the instance variables and

instance methods of a previously defined superclass. The new class is referred to as subclass.

Inheritance is done by using extends keyword as shown in the following code.

The super keyword is used to call the constructor of superclass. The call to the superclass constructor

must be the first line in the body of the subclass constructor. It is also a syntax error if the arguments

to a super call by a subclass to its superclass constructor do not match the parameters specified in

one of the superclass constructor definitions.

Why do we need super keyword? >>> Constructors are never inherited – they are specific to the class

in which they are defined.

class Subclass extends Superclass {

// members

}

class Super{

sub(){}

}

class Sub extends Super{

Sub(){

super();

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Overriding methods

Any subclass can re-­­implement the function that is defined in superclass. This process is called

Overriding. The ability of a subclass to override a method in its superclass allows a class to inherit

from a superclass whose behavior is "close enough" and then override methods as needed.

final instance variable

We can define a instance or class variable which is not modifiable something like const or #define in

C++/C. Such variable is called final variable.

‘final’ variable must be initialized in its declaration or in the every constructor of the class.

final method

A method that is declared final cannot be overridden in a subclass. Methods that are declared static

and methods that are declared private are implicitly final.

class Super{

sub(){}

function(){

//statements

}

}

class Sub extends Super{

Sub(){

super();

}

function(){

super.function(); //calling overriden method.

// statements

}

}

class A{

final public void function1(){}

class A{

public final double pi = 3.1416;

public final double g = 9.8;

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

final class

A class that is declared final cannot be superclass because none of the class can be inherited from

final class. So, all methods in final class are implicitly final.

Finalization method

Before an object gets garbage collected, the garbage collector gives the object an opportunity to clean

up after itself through a call to the objects’ finalize method. This process is called finalization.

Abstract method and classes

A method can be declared in a class without implementation. Such method is called abstract method.

Java uses abstract keyword to define an abstract method. These methods should be implemented in

derived class i.e. overriding such abstract methods is compulsory. A class that defines one or more

abstract method is called abstract class. A class is made abstract by declaring it with abstract

keyword. No any object can be instantiated from abstract class. The sole purpose of an abstract class

is to provide an appropriate superclass from which other classes may inherit interface or

implementation. Abstract class may be used to create reference to abstract class. Classes from which

objects can be instantiated are called concrete classes.

It is compulsory that a class should be abstract if it contains abstract method. If a subclass is derived

from an abstract method without supplying a definition for some abstract methods in the subclass,

that methods remain abstract is the subclass. Consequently, the subclass is also an abstract class.

private static void static function2(){} // this is implicitly final

}

final class A{

public void function1(){}

private void static function2(){}

}

abstract class A{

public void function1(){

// body of the function

}

abstract void function2();

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

 Interface

Introduction

An interface is a kind of class that only contains the methods without any implementation. An

interface is a named collection of method definitions (without implementations). An interface can

also include constant declarations. Each variable that is defined in interface should be final and static.

Interfaces are useful for the following:

• Capturing similarities between unrelated classes without artificially forcing a class

relationship

• Declaring methods that one or more classes are expected to implement

• Revealing an object's programming interface without revealing its class. (Objects such as

these are called anonymous objects and can be useful when shipping a package of classes to

other developers.)

How to define interface?

Extending interface

An interface can extends another interface but not other classes.

How to implement interface?

A class never extends an interface rather it implements it. If any class implements any interface than

that class should implement each and every function whose definition was in interface. Implementing

an interface is like signing a contract with the compiler that states, “I will define all the methods

specified by the interface”.

 class A implements SuperInterface{

interface SuperInterface {

// final and static variables

public void function1();

public int function2(int, int);

}

interfaceSubInterface extends SuperInterface{

public void function3(int);

Public int function4();

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Leaving a method of an interface undefined in a class that implements the interface results in a

compile error. A class can implement more than one interface by using comma operator.

Example of Interface

public void function1(){

// function implementation.

}

public int function2(int x, int y){

//function implementation.

return x + y;

}

}

// Interface.java

interface PI{

static final float pi = 3.1416f;

}

interface Area extends PI{

public float getArea(float x, float y);

}

interface Shape extends Area{

public void display(float x, float y);

}

class Rectangle implements Shape{

public float getArea(float x, float y) {

return x * y;

}

public void display(float x, float y){}

}

class Circle implements Shape{

public float getArea(float x, float y) {

return pi * x * x;

}

public void display(float x, float y){}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

class Interface {

public static void main(String[] args) {

Rectangle r = new Rectangle();

Circle c = new Circle();

Shape s;

s = r;

System.out.println(s.getArea(2,3));

s = c;

System.out.println(s.getArea(4,0));

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Package

Introduction

To make classes easier to find and use, to avoid naming conflicts, and to control access, programmers

bundle groups of related classes into packages. A package is a collection of related classes and

interfaces that provides access protection and namespace management. The classes and interfaces

that are part of the JDK are members of various packages that bundle classes by function: applet

classes are in java.applet, I/O classes are in java.io, and the GUI widget classes are in java.awt. You can

put your classes and interfaces in packages, too.

Benefits

• Reusability

• Uniqueness

• Encapsulation

• It helps in design

How to use package?

When you have to use any library class in your application, you have to import the corresponding

package telling the compiler that the class you have used in your application is inside that packege.

Package name consists of hierarchies of folder separated by dot operartor and either a class name or

* to import every class from that package. Consider the following example.

In this example, four different packages have been used so that this application can use all that classes

that are grouped into the listed packages.

import java.io.*;

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

class A{

// body of a class.

double function(){

double y = java.lang.Math.sqrt(25);

return y;

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

How to create our own package?

Let’s imagine that our current path is c:\javaprog. First create a folder inside the current directory

(e.g. edu). Create a source file and put it in package and compile it. While writing a source code, you

put a package statement at the top of the source file in which the class or interface is defined. For

example, if you want to put it in edu folder you need to write with the following source code.

The class A is a public member of a package edu.

Access modifier

The following diagram shows the accessibility of different access modifiers.

edu.A edu.B edu.C extends

edu.A

com.D com.E extends

edu.A

Private X X X X

Public 

 

   

 

  

Protected 

 

   X   

Friendly      X X

package edu;

import java.io.*;

public class A extends ClassName implements InterfaceName{

// body of a class.

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Exceptional Handling

Introduction

An exception is an event that occurs during the execution of a program that disrupts the normal flow of

instructions. Many kinds of errors can cause exceptions-­­-­­problems ranging from serious hardware

errors, such as a hard disk crash, to simple programming errors, such as trying to access an out-­­of-­­

bounds array element. When such an error occurs within a Java method, the method creates an

exception object and hands it off to the runtime system. The exception object contains information

about the exception, including its type and the state of the program when the error occurred. The

runtime system is then responsible for finding some code to handle the error. In Java terminology,

creating an exception object and handing it to the runtime system is called throwing an exception. The

point at which the throw is executed is called the throw point.

Once an exception is thrown, the block in which the exception is thrown expires and control cannot

return to the throw point. Thus Java uses the termination model of exception handling rather than the

resumption model of exception handling. It is also not possible to return to the throw point by issuing a

return statement ina catch handler. Following are some exceptions that can be generated by java

statements.

• ArithmeticException

• NumberFormatException

•ArrayIndexOutOfBoundsException

• FileNotFoundException

• IOException

Syntax of Exceptional Handling

The basic concepts of exception handling are throwing an exception and catching it.

Throws

exception

objects

catch(ExceptionType e)

{

//statement

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Java uses a keyword try to preface a block of code that is likely to case an error condition and throws

an exception. A catch block defined by the keyword catch catches the exception thrown by the try

block. An exception cannot access objects defined within its try block because the try block has

expired when the handler begin executing. It is possible to write the multiple catch blocks. But it is to

be noted that the handler that catches a subclass object should be placed before a handler that

catches a superclass object. If the superclass handler were first, it would catch superclass objects and

the objects of subclasses of the superclass as well.

finally Block

The final step in setting up an exception handler is providing a mechanism for cleaning up the state of

the method before (possibly) allowing control to be passed to a different part of the program. You do

this by enclosing the cleanup code within a finally block. The runtime system always executes the

statements within the finally block regardless of what happens within the try block. This block is

optional and it is the preferred means for preventing resource leaks.

throws Clause

A throws clause lists all the exceptions that can be thrown by a method.

The types of exception that are thrown by a method are specified in the method definition with a

throws clause. A method can throw objects of the indicated classes, or it can throw objects of

subclass.

try{

//statements

}

catch(ExceptionType e)

{

//statements

}

finally{

//statement

}

void function()throws ExceptionType1, ExceptionType2

{

//statement

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Creating our own Exception

The following program illustrates the creation of own exception.

// TestMyException.java

class MyException extends Exception{

MyException(String msg){

super(msg);

}

}

//-­­

class TestMyException{

public static void main(String[] args){

int x = 0;

x = Integer.parseInt(args[0]);

try{

if(x<0){

throw new MyException(“Negative Number.”);

}

else{

//process with x variable.

}

}

catch(MyException me){

System.out.println(me.getMessage());

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Multi-­‐threading

Introduction

A thread is a single sequential flow of control within a program. Threads are also called light weight

processes. A program that has many threads running concurrently is called multithreading. Java

 multi-­‐threading is platform dependent. Thus, a multithreaded application could behave differently on

 different java implementations.

How to create a thread?

Threads are implemented in the form of objects that contain the method called run() method. The

run() method should be invoked by an object of the concerned thread. This can be achieved by

creating the thread and initiating it with the help of another thread method called start() method.

The run() method can be written in two ways.

•By extending Thread class

• By implementing Runnable interface

Thread class

The java.lang.Thread class is a concrete class, that is, it is not an abstract class, which encapsulates the

behavior of a thread. To create a thread, the programmer must create a new class that should extends

Thread class. The programmer must override the run() function of Thread to do useful work. This

function is not called directly by the user, rather the user must call the start() method of thread,

which in turn calls run(). The following topic illustrate the use.

How to extends Thread class?

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Class MyThread extends Thread {

public void run() {

// do some work

}

}

class TestThread {

public static void main(String[] args) {

MyThread t1 = new MyThread();

MyThread t2 = new MyThread();

t1.start();

t2.start();

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Runnable Interface

This interface has a single function run(), which must be implemented by the class that implements

the interface. The following topic shows the use of Runnable interface.

How to implements Runnable interface?

Transition diagram or state diagram of a thread

At any time, a thread is said to be in one of several thread states. They include:

• Newborn state

• Runnable state

•Running state

• Blocked state

• Dead state

When we create a thread object, the thread is said to be in the newborn state. The thread remains in

this state until the thread’s start method is called. This function causes the thread to enter the ready

}

}

Class MyThread implements Runnable{

public void run() {

// do some work

}

}

class TestThread {

public static void main(String[] args) {

MyThread a = new MyThread();

Thread t1 = new Thread(a);

MyThread b = new MyThread();

Thread t2 = new Thread(b);

t1.start();

t2.start();

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

or runnable state. The highest priority ready thread enters the running state when the system assigns

a processor to the thread. A thread enters the dead state when its run method completes or

terminates for any reason – a dead thread will eventually be disposed of by the system.

Notify (), notifyall(), sleep

interval expires, i/o completion

start()

Blocked

run()

wait(),

sleep(), i/o

operations

Quantum

expiration,

yield,

interrupt

stop()

One way for a running thread to enter the blocked state is when the thread issues an input/output

request. In this case, a blocked thread becomes ready when the I/O it is waiting for completes. A

blocked thread cannot use processor if one is available. When a sleep method is called in a running

thread, that thread enters the sleeping state. A sleeping thread becomes ready after the designated

sleep time expires. When a running thread calls wait the thread enters a waiting state for the

particular object on which wait was called. One thread in the waiting state for a particular object

becomes ready on a call to notify issued by another thread associated with that object.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Scheduling and Thread priority

Every thread has a priority value. It ranges from Tread.MIN_PRIORIY (1) to Thread.MAX_PRIORITY

(10). By default, each thread is given priority Thread.NORM_PRIORITY (5). Each new thread inherits

the priority of the thread that creates it.

If at any time a thread of a higher priority than the current thread becomes runnable, it preempts the

lower-­­priority thread and begins executing. By default, threads at the same priority are scheduled

round-­­robin, which means once a thread starts to run, it continues until it goes to blocked state by any

reason.

high

Priority

low

The job of the java scheduler is to keep a highest priority thread running at all times, and If time-­­ slicing

is available, to ensure that several equally high-­­priority threads each execute for a quantum in round-­­

robin fashion. A new entry of higher priority thread can postpone, possibly indefinitely, the execution

of lower priority threads. Such indefinite postponement of lower priority thread is often referred as

starvation.

Synchronization

Every thread has a life of its own. Normally, a thread goes about its business without any regard for

what other threads in the application are doing. Synchronization is about coordinating the activities

of two or more threads, so they can work together and not collide in their use of the same address

space. Java uses monitors (semaphore) to perform synchronization. Every object with the

synchronized methods is a monitor. The monitor allows one thread at a time to execute a

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

synchronized method on the object. The following program explains the use of synchronized

keyword.

class CompleteName{

synchronized void printName(String first, String second){

System.out.print(first);

try{

Thread.sleep(1000);

}catch(InterruptedException e){

System.out.println("Interrupted");

}

System.out.println(" " + second);

}

}

class SThread implements Runnable{

String f,s;

CompleteName cn;

public SThread(CompleteName cn, String f, String s){

this.cn = cn;

this.f = f;

this.s = s;

}

public void run(){

cn.printName(f, s);

}

}

class Synch{

public static void main(String[] args){

CompleteName cn = new CompleteName();

Thread t1 = new Thread(new SThread(cn,"Rupak","Shakya"));

Thread t2 = new Thread(new SThread(cn,"Sushil","Bajracharya"));

Thread t3 = new Thread(new SThread(cn,"Vivek","Agrawal"));

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Other Important topics:

• Static variables

• Static member functions

• JAR Files

• Inner classes

• Anonymous classes

• Adapter classes

t1.start();

t2.start();

t3.start();

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Applet Programming

1. Introduction

2. Limitations of Applet

3. Standard methods of Applet

4. Applet Life Cycle

5. A sample program

6. How to run Applet?

7. Passing Parameter to Applet

8. The <applet> Tag

9. What applet can and can’t do

Introduction

One of the original tenets of java was that applications would be delivered over the network to your

computer. Applets are small program that are primarily used in Internet computing. An applet is a

part of a web page, just like an image or hyperlink. It “owns” some rectangular are of the user’s

screen. It can draw whatever it wants and respond to keyboard and mouse events in that area. When

the web browser loads the page that contains a java applet, it knows how to load the classes of the

applet and run them. Applet does not need to be installed. It is downloaded from the remote

computer and your browser runs it.

Limitations of Applet

Applets are quarantined within the browser by an applet SecurityManager. The SecurityManager is

part of the web browser or applet viewer. It is installed before the browser loads any applets and

java.awt.Container

java.awt.Component

java.awt.Applet

java.awt.Panel

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

implements the basic restrictions that let the user run untrusted applets safely. Most browsers

impose the following restrictions on untrusted applets:

• Untrusted applets cannot read or write files on the local applets.

• Untrusted applets can open network connections (sockets) only to the server from which they

originated.

• Untrusted applets cannot start other processes on the local host.

• Untrusted applets cannot have native methods.

 Standard methods of Applet

Every applet is created by extending the Applet class or JApplet class. The Applet class contains five

methods an applet can override to guide it through its lifecycle. They are:

• public void init()

• public void start()

• public void paint()

• public void stop()

• public void destroy()

These methods are called by the applet viewer or browser to direct the applet’s behavior. The init()

method is called once., after the applet is created. The init() method is where you perform basic setup

like parsing parameters, building a user interface, and loading resources. An applet doesn’t normally

do any work in its constructor; it relies on the default constructor for the JApplet class and does its

initialization in the init() method.

The start() method is called whenever the applet becomes visible. When a program first begins the

init() method is followed by the start() method. After that, in many instances there will never be a

cause for the start() method to be handled again. In order for start() to be handled a second time or

more, the applet has to stop execution at some point.

The stop() method is called when an applet stops execution. This event can occur when a user leaves

the web page containing the applet and continues to another page. It also can occur when the stop()

method is called directly in a program.

Whenever something needs to be displayed or redisplayed on the applet window, the paint() method

handles the task. You also can force paint() to be handled with the following statement:

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

repaint();

unlike the other methods in Applet class, the paint() method takes an argument. The following is an

example of simple paint() method:

public void paint(Graphics g){ . . . }

The argument of paint function is a Graphics object. The Graphics class of objects is used t handle all

attributes and behaviors that are needed to display text, graphics, images, and other information on

screen.

The destroy() method is an opposite of sorts to the init() method. It is handled just before an applet

completely closes down and completes running. The destroy() method is called to give the applet a

last chance to clean up before it’s removed – some time after the call to stop().

Applet Life Cycle

Every Java applet inherits a set of default behaviors from the Applet class. As a result, when an applet

is loaded, it undergoes a series of changes in its state as shown in the following diagram.

stop()

paint()

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Initialization State:

Applet enters the initialization state when it is first loaded. This is achieved by calling the init()

method of Applet class. The applet is new. At this stage, we may do the following, if required.

• Create objects needed by the Applet

• Set up initial values

• Load images or fonts

• Set up colors

This initialization occurs only once in the applet’s life cycle. To provide any of the behaviors

mentioned above, we must override the init() method.

public void init(){

// . . .

}

Running State:

Applet enters the running state the system calls the start() method of Applet class. This occurs

automatically after the applet is initialized. Starting of an applet can also occur if the applet is already

in stopped state. For example, we may leave the web page containing the applet temporarily to

another page and return back to the page. This again starts the applet running. Note that, unlike init()

method, the start() method may be called more than once. We may override the start() method to

create a thread to control the applet.

public void start(){

// . . .

}

Idle or Stopped State:

An applet becomes idle if when it is stopped from running. Stopping occurs automatically when we

leave the page containing the currently running applet. We can also call the stop() method explicitly.

If we use to run the applet, then we must use stop() method to terminate the thread. We can achieve

by overriding the stop() method.

public void stop(){

// . . .

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Dead State:

An applet is said to be dead then it is removed from memory. This occurs automatically by invoking

the destroy() method when we quit the browser. Like initialization, destroying stage occurs only once

in the Applet’s life cycle. If the applet has created any resources, like threads we may override the

destroy() method to clean up these resources.

public void destroy(){

// . . .

}

A Sample program

// Sum.java

import java.awt.event.*; import java.awt.*; import javax.swing.*;

import javax.swing.event.*;

public class Sum extends JApplet{

JButton add = new JButton("Add");

JTextField one = new JTextField(5);

JTextField two = new JTextField(5);

JTextField ans = new JTextField(5);

JLabel plus = new JLabel("+");

JLabel equalsto = new JLabel("=");

JPanel p = new JPanel();

public void init(){

p.add(one); p.add(plus); p.add(two);

p.add(equalsto);

p.add(ans);

add.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

int x = Integer.parseInt(one.getText());

int y = Integer.parseInt(two.getText());

ans.setText(String.valueOf(x+y));

}

});

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

How to run Applet?

To run an applet you need to write html file so that it can embed that applet. The following example

shows the html file to embed the given example of applet.

Now, you can run this html file using either browser or appletviewer application.

Passing Parameter to Applet

p.add(add);

getContentPane().add(p);

}

public void start(){

}

}

<html>

<head>

<title> Applet Example </title>

</head>

<body>

<applet code="Sum.class" width="200" height="200">

</applet>

</body>

</html>

// Hello.java

import java.awt.*;

import java.applet.*;

public class Hello extends Applet

{

String s;

public void init()

{

s = getParameter("string");

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The <applet> Tag

When you build <APPLET> tags, keep in mind that words such as APPLET and CODEBASE can be

typed in either as shown or in any mixture of uppercase and lowercase.Bold fontindicates

something you should type in exactly as shown (except that letters don't need to be uppercase). Italic

font indicates that you must substitute a value for the word in italics. Square brackets ([and])

indicate that the contents of the brackets are optional.

< APPLET

[CODEBASE = codebaseURL]

CODE = appletFile

[ALT = alternateText]

[NAME = appletInstanceName]

WIDTH =pixels

HEIGHT = pixels

[ALIGN = alignment]

[VSPACE = pixels]

[HSPACE = pixels]

>

[< PARAM NAME = appletParameter1 VALUE = value >]

[< PARAM NAME = appletParameter2 VALUE = value >]

if(s==null)

s = "Java";

s = "Hello " + s;

}

public void paint(Graphics g)

{

g.drawString(s,10,100);

}

}

<applet code="Hello.class" width="200" height="200">

<param name="string" value="Java programers">

</applet>

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

. . .

[alternateHTML]

</APPLET>

CODEBASE = codebaseURL

This optional attribute specifies the base URL of the applet -­­-­­ the directory or folder that contains the

applet's code. If this attribute is not specified, then the document's URL is used.

CODE = appletFile

This required attribute gives the name of the file that contains the applet's compiled Applet subclass.

This file is relative to the base URL of the applet. It cannot be absolute.

ALT = alternateText

This optional attribute specifies any text that should be displayed if the browser understands the

APPLET tag but can't run Java applets.

NAME = appletInstanceName

This optional attribute specifies a name for the applet instance, which makes it possible for applets on

the same page to find (and communicate with) each other.

WIDTH = pixels

HEIGHT = pixels

These required attributes give the initial width and height (in pixels) of the applet display area, not

counting any windows or dialogs that the applet brings up.

ALIGN = alignment

This optional attribute specifies the alignment of the applet. The possible values of this attribute are

the same (and have the same effects) as those for the IMG tag: left, right, top, texttop, middle,

absmiddle, baseline, bottom, absbottom.

VSPACE = pixels

HSPACE = pixels

These optional attributes specify the number of pixels above and below the applet (VSPACE) and on

each side of the applet (HSPACE). They're treated the same way as the IMG tag's VSPACE and HSPACE

attributes.

< PARAM NAME = appletParameter1 VALUE = value >

<PARAM> tags are the only way to specify applet-­­specific parameters. Applets read user-­­specified

values for parameters with the getParameter() method.

alternateHTML

If the HTML page containing this <APPLET> tag is viewed by a browser that doesn't understand the

<APPLET> tag, then the browser will ignore the <APPLET> and <PARAM> tags, instead interpreting

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

any other HTML code between the <APPLET> and </APPLET> tags. Java-­­compatible browsers ignore

this extra HTML code.

What Applets Can and Can't Do

Security Restrictions

Every browser implements security policies to keep applets from compromising system security. This

section describes the security policies that current browsers adhere to. However, the implementation

of the security policies differs from browser to browser. Also, security policies are subject to change.

For example, if a browser is developed for use only in trusted environments, then its security policies

will likely be much more lax than those described here.

Current browsers impose the following restrictions on any applet that is loaded over the network:

•An applet cannot load libraries or define native methods.

• It cannot ordinarily read or write files on the host that's executing it.

• It cannot make network connections except to the host that it came from.

• It cannot start any program on the host that's executing it.

• It cannot read certain system properties.

Windows that an applet brings up look different than windows that an application brings up.

Each browser has a SecurityManager object that implements its security policies. When a

SecurityManager detects a violation, it throws a SecurityException. Your applet can catch this

SecurityException and react appropriately.

Applet Capabilities

The java applet package provides an API that gives applets some capabilities that applications don't

have. For example, applets can play sounds, which other programs can't do yet.

Here are some other things that current browers and other applet viewers let applets do:

• Applets can usually make network connections to the host they came from.

• Applets running within a Web browser can easily cause HTML documents to be displayed.

• Applets can invoke public methods of other applets on the same page.

• Applets that are loaded from the local file system (from a directory in the user's CLASSPATH)

have none of the restrictions that applets loaded over the network do.

• Although most applets stop running once you leave their page, they don't have to.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

CLASSPATH

A path specifies the name and location of a file on the file system. It starts with the name of the disk or

the root of the filesystem and works its way down through various directories until reaches the file.

File, directory, and path naming conventions are platform specific. For example a Unix path looks like

/home/users/elharo/html/javafaq.html. A DOS/Windows path looks like C:\html\javafaq.htm. A

Macintosh path looks like My Hard Drive:html:Java FAQ List v1.1. All three of these examples point to

a file. Paths can also point to a directory. For example, /home/users/elharo/html, C:\html.

The character that separates one directory from the next in a path is called theseparator character. It

is a slash (/) on Unix, a backslash (\) in Windows and a colon (:) on the Mac. You can get its value on a

particular platform by looking at the static variable java.io.File.separatorCharacter.

If you actually check this on the Mac, you'll note something funny. java.io.File.separatorCharacter

appears to be a slash (/) like on Unix, not a colon like a Mac programmer would expect. Why Java had

to be different from every other Mac program in the universe I don't know. This is problematic

because Mac file names can include slashes.

The CLASSPATH is an environment variable that contains a list of directories where Java looks for

classes referenced in a program. If the CLASSPATH isn't set properly no program written in Java will

be able to run, and the compiler won't be able to compile. Each entry in this list is separated from the

other entries by the java.io.File.pathSeparatorChar. This is semicolon (;) on Windows and a colon (:)

on Unix and the Mac.

For example

Unix: ~/classes:/usr/local/netscape/classes

Windows: C:\java\classes;C:\netscape\classes

Mac: My Hard Drive/JDK/classes:My Hard Drive/My Project:My Hard Drive/classes

On most platforms, the JDK's java interpreter appends some directories to the CLASSPATH you set

manually. These are set relative to where the java interpreter itself is. For example, if the java

program is installed in /usr/local/java/bin, then it will append /usr/local/java/classes and

/usr/local/java/lib/classes.zip to the CLASSPATH. Another way of thinking about it: if the directory

where the java interpreter is installed is $JAVA, then $JAVA/../classes and $JAVA/../lib/classes.zip are

automatically in your CLASSPATH.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Java applets and applications aren't self-­­contained. They need access to other classes to do their

work. For instance when you call System.out.println() Java needs to know where to look to find the

file that includes the System class.

The directories in the CLASSPATH are where Java starts searching for classes. To find a class Java first

changes the periods in the full package-­­qualified name of the class (e.g. java.util.Date and not just

Date) into directory separators (/ on Unix, \ on Windows, : on the Mac). Thus if it wants the

java.awt.GridBagLayout class, it looks for the file java/awt/GridBagLayout.class in each of the root

directories listed in the CLASSPATH variable from left to right until it finds the file. With the Unix

CLASSPATH listed above, Java first looks for ~/classes/java/awt/GridBagLayout.class Then for,

/usr/local/netscape/classes/java/awt/GridBagLayout.class.

The specification of the CLASSPATH is somewhat platform dependent. For instance ~ means the

home directory on Unix but has no meaning on the Mac.

Under Unix you set CLASSPATH variables like this:

csh: % setenv CLASSPATH my_class_path

sh: % CLASSPATH=my_class_path

You'll probably want to add one of these lines to your .login or .cshrc file so it will be automatically set

every time.

Under Windows you set the CLASSPATH environment variable with a DOS command like

C:\> SET CLASSPATH=C:\JDK\JAVA\CLASSES;c:\java\lib\classes.zip

You can also add this to your autoexec.bat file. You should of course point it at whichever directories

actually contain your classes.

The CLASSPATH variable is also important when you run Java applets, not just when you compile

them. It tells the web browser or applet viewer where it should look to find the referenced .class files.

If the CLASSPATH is set improperly, you'll probably see messages like "Applet could not start."

Since large packages can contain many, many .class files Sun has built the capability to read zip

archives into Java. Therefore an entire directory structure of class files can be zipped to save space. If

you want to see what's inside the zip file, unzip it. Java doesn't care whether or not a directory has

been zipped. You just need to make sure that the .zip file is named the same as the directory it

replaces plus the .zip extension and that it is in the same location.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

In Netscape you should make sure that the first directory in the CLASSPATH is the directory that

contains Netscape's class files (The defaults are /usr/local/netscape/java/classes on Unix and

C:\NETSCAPE\NAVIGATOR\Program\java\classes in Windows.)

Finally note that if you install additional packages such as Jeeves or any third party package, you need

to add the directory where the package is installed to your CLASSPATH. For example let's say you buy

a package of statistics classes from SPSS, and you put those classes in /opt/classes/stats. Then you

you need to add /opt/classes/stats to the end of your CLASSPATH.

You can temporarily add a directory to the CLASSPATH by giving the-­­classpath option to the java

interpreter or the javac compiler. For example,

javac -­­classpath $CLASSPATH:/opt/classes/stats

To use just the classes in /opt/classes/stats and not the classes normally found in your CLASSPATH,

omit $CLASSPATH like this:

javac -­­classpath /opt/classes/stats

Finally if the CLASSPATH environment variable has not been set, and you do not specify one on the

command line, then Java sets the CLASSPATH to the default:

Unix: .:$JAVA/classes:$JAVA/lib/classes.zip

Windows: .:$JAVA\classes:$JAVA\lib\classes.zip

Mac: ./$JAVA:classes/$JAVA:lib:classes.zip

Here. is the current directory and $JAVA is the main Java directory where the different tools like javac

were installed.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Event Handling

Introduction

How do swing components communicate? – By sending events. Every time the user types a character

or pushes a mouse button, an event occurs. An event is simply an ordinary Java object that is

delivered to its receiver by invoking an ordinary Java method. Any object can be notified of the event.

All it has to do is implement the appropriate interface and be registered as an event listener on the

appropriate event source. Swing components can generate many kinds of events. Here are a few

examples:

Act that results in the event Listener type

User clicks a button, presses Return while typing in a text

field, or chooses a menu item

ActionListener

User closes a frame (main window) WindowListener

User presses a mouse button while the cursor is over a

component

MouseListener

User moves the mouse over a component MouseMotionListener

Component becomes visible ComponentListener

Component gets the keyboard focus FocusListener

Table or list selection changes ListSelectionListener

Events are sent from a single source object to one or more listeners (or receivers). A listener

implements prescribed event-­­handling methods that enable it to receive a type of event. It then

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

registers itself with a source of that kind of event. It is important that registration of a listener is

always established before any events are delivered.

Event listener

Event listener

Event listener

An event is an instance of a subclass of java.util.EventObject; it holds information about something

that’s happened to its source. The Event Object class itself serves mainly to identify event objects;

the only information it contains is a reference to the event source (the object that sent the event).

Components do not normally send or receive Event Object as such; they work with subclasses

that provide more specific information.

Event Receivers and Listener Interfaces

An event is delivered by passing it as an argument to the receiving object’s event handler method.

ActionEvents, for example, are always delivered to a method called actionPerformed() in the

receiver:

For each type of event, there is a corresponding listener interface that prescribes the method/s it

must provide to receive those events. In this case, any object that receives ActionEvent must

implement the ActionListener interface:

public ExampleClass extends Jframe implements ActionListerner{

// . . .

}

Event Source

E
v
e

n
t

O
b

je
c
t

public void actionPerformed(ActionEvent ae){

// statements

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

All listener interfaces are sub-­­interfaces of java.util.EventListener, which is an empty interface. It

exists only to help the compiler identify listener interfaces. Listener interfaces are required for a

number of reasons. First, they help to identify objects that are capable of receiving a given type of

event. Next, listener interfaces are useful because several methods can be specified for an event

receiver as in the Mouse Listener.

How to implement an Event handler

Every event handler requires three bits of code:

1. In the declaration for the event handler class, code that specifies that the class either implements a

listener interface or extends a class that implements a listener interface. For example:

public class MyClass implements ActionListener {

}

2. Code that registers an instance of the event handler class as a listener upon one or more

components. For example:

SwingComponent.addActionListener(instanceOfMyClass);

3. Code that implements the methods in the listener interface. For example:

public void actionPerformed(ActionEvent e) {

...//code that reacts to the action...

}

Inner Classes

A class defined within another class is called inner class. In the following example an Engine class is

defined within another class called Car.

public Car{

// . . .

class Engine{

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The Engine class is called inner class and the class Car is called outer class. An inner class object is

allowed to access directly all the instance variables and methods of the outer class object that defined

it. Inner classes my also be declared within the body of a method. An inner class defined in a method

is allowed to access directly all the instance variables and methods of the out class object that defined

it and any final local variables in the method. Compiling a class that contains inner classes results in a

separate .class file for every class. Inner classes with names have the file name

OuterClassName$InnerClass-­­Name.class. Anonymous inner classes have the file name

OuterClassName$1.class and so on. The outer class is responsible for creating objects of its inner

classes. To create an object of another class’s inner class, first create an object of the outer class and

assign it to a reference (ref). Then use the following statement to create inner class.

OuterClassName.InnerClassName innerref = ref.new InnerClassName();

How to use inner classes in Event Handling?

public class Test extends JFrame{

JButton b = new JButton(“Exit”);

. . .

Test(){

. . .

EventHandler e_handler = new EventHandler();

b.addActionListener(e_handler);

panel.add(b);

getContentPane().add(panel);

}

class EventHandler implements ActionListener{

public void actionPerformed(ActionEvent e){

System.exit(0);

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Anonymous Inner Classes

Anonymous inner classes are those classes that have no name. These classes are mainly used in event

handling.

When an anonymous inner class implements an interface, the class must define every method in the

interface. So, if anonymous class of MouseListener is defined, it should implement every methods.

public class Test extends JFrame{

JButton b = new JButton(“Exit”);

. . .

Test(){

. . .

b.addActionListener(

new ActionListener() { // anonymous inner class

public void actionPerformed(ActionEvent e){

System.exit(0);

}

});

}

}

public class Test extends JFrame{

JButton b = new JButton(“Exit”);

. . .

Test(){

. . .

b.addMouseListener(

new MouseListener() { // anonymous inner class

public void mouseClicked(MouseEvent e){ . . .}

public void mousePressed(MouseEvent e){ . . .}

public void mouseReleased(MouseEvent e){ . . .}

public void mouseEntered(MouseEvent e){ . . .}

public void mouseExited(MouseEvent e){ . . .}

});

. . .

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Adapter Classes

Java provides a special feature, called an adapter class, which can simplify the creation of event

handlers in certain situations. An adapter class provides an empty implementation of all methods in

an event listener interface. Adapter classes are useful when you want to receive and process only

some of the events that are handled by a particular event listener interface. For each of the most

common listener interfaces containing more than one method, there is an adapter class containing

the stubbed methods.

How to implement adapter classes in Event Handling?

For example, suppose we want to catch a mousePresses() event in some component and exit from the

system. We can use the following code.

public class Test extends JFrame{

JButton b = new JButton(“Exit”);

. . .

Test(){

. . .

b.addMouseListener(

new MouseAdapter() { // anonymous inner class

public void mousePressed(MouseEvent e){

System.exit(0);

}

});

. . .

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

GUI Programming
Introduction

JFC (Java Foundation Class)

JFC is short for Java TM Foundation Classes, which encompass a group of features to help people build

graphical user interfaces (GUIs). The JFC was first announced at the 1997 JavaOne developer

conference and is defined as containing the following features:

• AWT(Abstract Window Toolkit)

• The Swing Components

• Pluggable look and feel -­­ Gives any program that uses Swing components a choice of looks and

feels. For example, the same program can use either the Java TM look and feel or the Windows

look and feel.

• Java 2D API -­­ Enables developers to easily incorporate high-­­quality 2D graphics, text, and

images in applications and in applets.

• Drag and Drop Support -­­ Provides the ability to drag and drop between a Java application and

a native application.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

• Accessibility API -­­ Enables assistive technologies such as screen readers and Braille displays to

get information from the user interface.

AWT (Abstract Window Toolkit)

AWT (the Abstract Window Toolkit) is the part of Java designed for creating user interfaces and

painting graphics and images. It is a set of classes intended to provide everything a developer

requires in order to create a graphical interface for any Java applet or application. Most AWT

components are derived from the java.awt.Component.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Swing

Swing is a large set of components ranging from the very simple, such as labels, to the very complex,

such as tables, trees, and styled text documents. Almost all Swing components are derived from a

single parent called JComponent which extends the AWT Container class.

A generatic Abstract Window Toolkit Container object is a component that can contain other

components.

Thus, Swing is best described as a layer on top of AWT rather than a replacement for it.

How are swing components different from awt components?

Swing components are referred to as lightweights while AWT components are referred to as

heavyweights. The difference between lightweight and heavyweight components is z-­‐order: the

notion of depth or layering. Each heavyweight component occupies its own z-­­order layer. All

lightweight components are contained inside heavyweight components and maintain their own

layering scheme defined by Swing. When we place a heavyweight inside another heavyweight

container it will, by definition, overlap all lightweights in that container.

You can identify Swing components because their names start with J. The AWT button class, for

example, is named Button, while the Swing button class is named JButton. Additionally, the AWT

components are in the java.awt package, while the Swing components are in the javax.swing package.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The biggest difference between the AWT components and Swing components is that the Swing

components are implemented with absolutely no native code. Since Swing components aren't

restricted to the least common denominator -­­-­­ the features that are present on every platform -­­-­­ they

can have more functionality than AWT components. The most remarkable thing about Swing

components is that they are written in 100% Java and do not depend on peer components, as most

AWT components do. This means that a Swing button or text area will look and function identically

on Macintosh, Solaris, Linux, and Windows platforms. This design eliminates the need to test and

debug applications on each target platform.

Assistive technologies such as screen readers can easily get information from Swing components. For

example, a tool can easily get the text that's displayed on a button or label.

Division of Swing Components

1. Top-­­Level Container : JFrame, JApplet, JDialog.

2. Intermediate Container

a) General Purpose Container: JPanel, JToolBar etc

b) Special Purpose Container: JinternalFrame etc

3. Atomic Components

a) Basic Controls: Jbutton, JcomboBox etc

b) Uneditable Information Displays: Jlabel, JproagressBar,JToolTip etc

c) Editable Information Displays: JFileChooser, JTable, JTree, JTextArea, JTextField etc

Containment Hierarchy

Here is a picture of simple swing application.

This swing application creates five commonly used Swing components:

• JFrame

• JPanel

• JLabel

• JTextField

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

• JButton

The frame is a top-‐‐level container. It exists mainly to provide a place for other Swing components to

paint themselves. The other commonly used top-­­level containers are dialogs (JDialog) and applets

(JApplet).

The panel is an intermediate container. Its only purpose is to simplify the positioning of the button

textfield, and label. Other intermediate Swing containers, such as scroll panes (JScrollPane) and

tabbed panes (JTabbedPane), typically play a more visible, interactive role in a program's GUI.

The button, textfield and label are atomic components -­­-­­ components that exist not to hold random

Swing components, but as self-­­sufficient entities that present bits of information to the user. Often,

atomic components also get input from the user. The Swing API provides many atomic components,

including combo boxes (JComboBox), text fields (JTextField), and tables (JTable).

Here is a diagram of the containment hierarchy for the window shown by swing application titled as

UserName. This diagram shows each container created or used by the program, along with the

components it contains.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

How to add Components in a Panel?

Layout Management

Layout managementis the process of determining the size and position of components. By default,

each container has a layout manager -­­-­­ an object that performs layout management for the

components within the container.

Layout Manager

A Layout Manager encapsulates an algorithm for positioning and sizing of GUI components.

LayoutManager is an interface in the Java Class Libraries that describes how Container and a layout

manager communicate.

The Java platform supplies five commonly used layout managers:

• FlowLayout

• BorderLayout

• GridLayout

• GridBagLayout

• BoxLayout

A layout manager must be associated with a Container object to perform its work. If a container does

not have an associated layout manager, the container simply places components wherever specified

by using the setBounds(), setLocation() and/or setSize() methods.

If a container has an associated layout manager, the container asks that layout manager to position

and size its components before they are painted. The layout manager itself does not perform the

painting; it simply decides what size and position each component should occupy and calls

setBounds(), setLocation() and/or setSize() on each of those components.

A LayoutManager is associated with a Container by calling the setLayout(LayoutManager) method of

Container. For example:

Jframe frame = new Jframe(“Example”);

JButton btnExit = new JButton(“Exit”);

JPanel pnlMain = new JPanel();

pnlMain.add(btnExit);

frame.getContentPane().add(pnlMain);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

A sample program that uses swing components to create visual application.

FlowLayout

FlowLayout puts components in a row, sized at their preferred size. If the horizontal space in the

container is too small to put all the components in one row, FlowLayout uses multiple rows.

FlowLayout can be customized at construction time by passing the constructor an alignment setting:

• FlowLayout.CENTER (the default)

• FlowLayout.RIGHT

• FlowLayout.LEFT

These settings adjust how the components in a given row are positioned. By default, all components

in a row will be separated by an horizontal gap, then the whole chunk will be centered in the available

FlowLayout f = new FlowLayout();

JPanel jp = new JPanel();

jp.setLayout(f);

// or (in a single line code)

JPanel jp = new JPanel(new FlowLayout());

//Sample Program

import javax.swing.*;

class Sample {

public static void main(String[] args) {

Jframe frame = new Jframe(“Sample”);

Container contentPane = frame.getContentPane();

frame.setBounds(10,10,300,300);

JButton btnOk = new JButton(“ OK “);

JPanel pnlMain = new JPanel(new FlowLayout());

pnlMain.add(btnOk);

contentPane.add(pnlMain);

frame.setVisible(true);

frame.setDefaultCloseOperation(Jframe.EXIT_ON_CLOSE);

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

width. LEFT and RIGHT define padding such that the row is left or right aligned. The alignment can

also be changed by calling the setAlignment() method of FlowLayout with one of the same alignment

constants.

FlowLayout can also be customized with different horizontal and vertical gap settings. These specify

how much space is left between components, horizontally (hgap) and vertically (vgap). If you don't

specify a gap value, FlowLayout uses 5 pixels for the default gap value.

BorderLayout

BorderLayout is probably the most useful of the standard layout managers. It defines a layout scheme

that maps its container into five logical sections as shown in the following figure.

The BorderLayout manager requires a constraint when adding a component. The constraint can be

one of the following:

• BorderLayout.NORTH

• BorderLayout.SOUTH

• BorderLayout.EAST

• BorderLayout.WEST

• BorderLayout.CENTER

BorderLayout respects some of the preferred sizes of its contained components, but not all. Its layout

strategy is:

• If there is a NORTH component, get its preferred size. Respect its preferred height if possible,

and set its width to the full available width of the container.

• If there is a SOUTH component, get its preferred size. Respect its preferred height if possible,

and set its width to the full available width of the container.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

• If there is an EAST component, get its preferred size. Respect its preferred width if possible,

and set its height to the remaining height of the container. If there is an WEST component, get

its preferred size.

• Respect its preferred width if possible, and set its height to the remaining height of the

container.

• If there is a CENTER component, give it whatever space remains, if any.

All the applications that use BorderLayout specify the component as the first argument to the add

method. For example:

panel.add(component, BorderLayout.CENTER);

GridLayout

A GridLayout places components in a grid of cells. Each component takes all the available space

within its cell, and each cell is exactly the same size. If you resize the GridLayout window, you'll see

that the GridLayout changes the cell size so that the cells are as large as possible, given the space

available to the container.

When specifying a GridLayout, there are two main parameters: rows and columns. You can specify

both of these parameters, but only one will ever be used. Take a look at the following code snippet

from GridLayout.java:

Notice that if rows is non-­­zero, it calculates the number of columns; if rows is zero, it calculates the

number of rows based on the specified number of columns.

GridBagLayout

GridBagLayout is the most flexible -­­-­­ and complex -­­-­­ layout manager the Java platform provides. A

GridBagLayout places components in a grid of rows and columns, allowing specified components to

span multiple rows or columns. Not all rows necessarily have the same height. Similarly, not all

columns necessarily have the same width. Essentially, GridBagLayout places components in

rectangles (cells) in a grid, and then uses the components' preferred sizes to determine how big the

cells should be.

if (nrows > 0) {

ncols = (ncomponents + nrows -­­ 1) / nrows;

else

nrows = (ncomponents + ncols -­­ 1) / ncols;

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The way the program specifies the size and position characteristics of its components is by specifying

constraints for each component, To specify constraints, you set instance variables in a

GridBagConstraints object and tell the GridBagLayout (with the setConstraints method) to associate

the constraints with the component. However, due to it's complexity it usually requires some helper

methods or classes to handle all necessary constraints information.

When a component is added to a container which has been assigned a GridBagLayout, a default

GridBagConstraints object is used by the layout manager to place the component accordingly, as in

the above example. By creating and setting a GridBagConstraints’ attributes and passing it in as an

additional parameter in the add() method, we can flexibly manage the placement of our components.

Below are the various attributes we can set in a GridBagConstraints object along with their default

values.

The following code is typical of what goes in a container that uses a GridBagLayout.

public int gridx = GridBagConstraints.RELATIVE;

public int gridy = GridBagConstraints.RELATIVE;

public int gridwidth = 1;

public int gridheight = 1;

public double weightx = 0.0;

public double weighty = 0.0;

public intanchor= GridBagConstraints.CENTER;

public int fill = GridBagConstraints.NONE;

public Insets insets = new Insets(0, 0, 0, 0);

public int ipadx = 0;

public int ipady = 0;

GridBagLayout gridbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

JPanel panel = new JPanel();

panel.setLayout(gridbag);

//For each component to be added to this container:

//...Create the component...

//...Set instance variables in the GridBagConstraints instance...

gridbag.setConstraints(theComponent, gbc);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

BoxLayout

A layout manager that allows multiple components to be layed out either vertically or horizontally.

The components will not wrap so, for example, a vertical arrangement of components will stay

vertically arranged when the frame is resized.

Nesting multiple panels with different combinations of horizontal and vertical gives an effect similar

to GridBagLayout, without the complexity. The diagram shows two panels arranged horizontally,

each of which contains 3 components arranged vertically.

The Box container uses BoxLayout (unlike JPanel, which defaults to flow layout). You can nest

multiple boxes and add components to them to get the arrangement you want.

The BoxLayout manager that places each of its managed components from left to right or from top to

bottom. When you create a BoxLayout, you specify whether its major axis is the X axis (which means

left to right placement) or Y axis (top to bottom placement). Components are arranged from left to

right (or top to bottom), in the same order as they were added to the container. Components are laid

out according to their preferred sizes and not wrapped, even if the container does not provide

enough space.

panel.add(theComponent);

JPanel panel = new JPanel();

panel.setLayout(new BoxLayout(panel, BoxLayout.X_AXIS));

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

 Design it yourself.

import javax.swing.*; import java.awt.*; import javax.swing.border.*;

import javax.swing.event.*;

class Exercise {

public static void main(String[] args) {

JFrame frame = new JFrame("Do it yourself");

frame.setBounds(100,100,400,300);

frame.setResizable(false);

JPanel pnlMain = new JPanel(new BorderLayout());

JPanel pnlData = new JPanel(new BorderLayout());

JPanel pnlInput = new JPanel(new GridLayout(3,2,0,10));

pnlInput.setBorder(new EmptyBorder(10,10,10,10));

JLabel lblDate = new JLabel("Date:");

JLabel lblFrom = new JLabel("From:");

JLabel lblTo = new JLabel("To:");

JTextField txtDate = new JTextField(12);

JTextField txtFrom = new JTextField(12);

JTextField txtTo = new JTextField(12);

pnlInput.add(lblDate);

pnlInput.add(txtDate);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

pnlInput.add(lblFrom);

pnlInput.add(txtFrom);

pnlInput.add(lblTo);

pnlInput.add(txtTo);

JPanel pnlOptions = new JPanel();

pnlOptions.setBorder(new TitledBorder("Options: "));

pnlOptions.setLayout(new BoxLayout(pnlOptions, BoxLayout.Y_AXIS));

JRadioButton rbtnFirstClass = new JRadioButton("First Class", true);

JRadioButton rbtnBusiness = new JRadioButton("Business");

JRadioButton rbtnCoach = new JRadioButton("Coach");

ButtonGroup group = new ButtonGroup();

group.add(rbtnFirstClass);

group.add(rbtnBusiness);

group.add(rbtnCoach);

pnlOptions.add(rbtnFirstClass);

pnlOptions.add(rbtnBusiness);

pnlOptions.add(rbtnCoach);

pnlData.add(pnlInput,BorderLayout.WEST);

pnlData.add(pnlOptions,BorderLayout.EAST);

JPanel pnlAvailable = new JPanel(new BorderLayout());

pnlAvailable.setBorder(new TitledBorder("Available Flights: "));

JTextArea txtaFlights= new JTextArea();

txtaFlights.setEditable(false);

JScrollPane ps = new JScrollPane(txtaFlights);

pnlAvailable.add(ps,BorderLayout.CENTER);

JPanel pnlButtons = new JPanel(new FlowLayout());

JButton btnSearch = new JButton("Search");

JButton btnPurchase = new JButton("Purchase");

JButton btnExit = new JButton("Exit");

pnlButtons.add(btnSearch);

pnlButtons.add(btnPurchase);

pnlButtons.add(btnExit);

pnlMain.add(pnlData, BorderLayout.NORTH);

pnlMain.add(pnlAvailable, BorderLayout.CENTER);

pnlMain.add(pnlButtons, BorderLayout.SOUTH);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

frame.getContentPane().add(pnlMain);

frame.setVisible(true);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}// source code for “Do it yourself”

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Input Output Operation

Introduction

Often programs need to bring in information from an external source or send out information to an

external destination. The information can be anywhere: in a file, on disk, somewhere on the network,

in memory, or in another program. Also, it can be of any type: objects, characters, images, or sounds.

The operation that brings the information inside your application is input operation and the

operation that sends your data outside of your program is called output operation.

Streams

All fundamental I/O operation in Java is based on streams. A stream represents a flow of data, or a

channel of communication with a writer at one end and reader at the other end. When you are

working with terminal input and output, reading or writing files, or communicating through sockets

in Java, you are using a stream of one type to another.

No matter where the information is coming from or going to and no matter what type of data is being

read or written, the algorithms for reading and writing data is pretty much always the same.

Reading Writing

open a stream

while more information

read information

close the stream

open a stream

while more information

write information

close the stream

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The java.io package contains a collection of stream classes that support these algorithms for reading

and writing. These classes are divided into two class hierarchies based on the data type (either

characters or bytes) on which they operate.

1. Byte stream classes that provide support for handling I/O operations on bytes.

2. Character stream classes that provide support for managing I/O operations on characters.

It is to be remembered that streams in Java are one-­­way streets. The Java.io input and output classes

represent the ends of a simple stream. For bi-­­directional conversation, we have to use one of each

type of stream.

Byte Streams

Programs should use the byte streams, descendants of InputStream and OutputStream, to read and write

8-­­bit bytes. InputStream and OutputStream provide the API and some implementation for input

streams (streams that read 8-­­bit bytes) and output streams (streams that write 8-­­bit bytes). These

streams are typically used to read and write binary data such as images and sounds. Input stream and

output stream are abstract classes that define the lowest level interface for all byte streams. They

contain methods for reading and writing an unstructured flow of byte level data. Because these

classes are abstract, you cannot create a generic input or output stream. Java implements subclasses

of these for activities like reading and writing to files and communicating with sockets.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The above diagram represents the input and output class hierarchy.

Character Streams

Reader and Writer are the abstract super classes for character streams in java.io. Reader provides the API

and partial implementation for readers-­­-­­streams that read 16-­­bit characters-­­-­­and Writer provides the

API and partial implementation for writers-­­-­­streams that write 16-­­bit characters.

Subclasses of Reader and Writer implement specialized streams and are divided into two categories:

those that read from or write to data sinks (shown in gray in the following figures) and those that

perform some sort of processing (shown in white). The figure shows the class hierarchies for the

Reader and Writer classes.

Two special classes, InputStreamReader and OutputStreamreader, bridge the gap between the world

of character streams and the world of byte streams. These are character streams that are wrapped

around an underlying byte stream. An encoding scheme is used to convert between bytes and

characters.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The following example shows the use of InputStreamReader Class.

First, we wrap an InputStreamReader around System.in. This object converts the incoming bytes of

System.in to characters using the default encoding scheme. Then we wrap a BufferedReader around

the Input InputStreamreader. BufferedReader gives us the readLine() method, which we can use to

convert a full line of text into a String. The string is then parsed into an integer.

try{

InputStreamReader in = new InputStreamReader(System.in);

// System.in represents standard input device.

BufferedReader scanf = new BufferedReader(in);

String text = scanf.readLine();

int x = Integer.parseInt(text);

}

catch(IOException ioe){ }

catch(ParseException pe){ }

catch(Exception e){ }

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Stream Wrappers

What if we want to do more than read and write a sequence of bytes or characters? We can use a

‘filter’ stream, which is a type of InputStream, OutputStream, Reader or Writer that wraps another

stream and adds new features. A filter stream takes the target stream as an argument in its

constructor and delegates call to it after doing some additional processing of its own.

Data Streams

DataInputStream and DataOutputStream are filter streams that let you read or write strings and

primitive data types that comprise more than a single byte. DataInputStream and DataOutputStream

implement the DataInput and DataOutput interfaces, respectively. These interfaces define the

methods required for streams that read and write strings and Java primitive numeric and Boolean

types in a machine-­­independent manner.

try{

DataInputStream dis = new DataInputStream(System.in);

double d = dis.readDouble();

int I = dis.readInt();

float f = dis.readFloat();

char c = dis.readChar();

}

catch(IOException ioe){ }

catch(Exception e){ }

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

This example wraps the standard input stream in a DataInputStream and uses it to read a double

value, int, float and char values. We can use a DataInputStream with any kind of input stream,

whether it is from a file, a socket, or standard input. The same applies to using a DataOutputStream.

Buffered streams

The BufferedInputStream, BufferedOutputStream, BufferedReader ad BufferedWriter classes add a

data buffer of a specified size to the stream path. A buffer can increase efficiency by reducing the

number of physical read or write operations that correspond to read() or write() method calls.

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer in the

constructor, a reasonably sized one is chosen for us.

The java.io.File class

The java.io.File class encapsulates access to information about a file or directory entry in the file

system. It can be used to get attribute information about a file, list the entries in a directory, and

perform basic file system operations like removing a file or making a directory. While the File object

handles these tasks, it doesn’t provide direct access for reading and writing file data; there are

specialized streams for that purpose.

Once we have a File object, we can use it to ask for information about the file or directory and to

perform standard operations on it. A number of methods let us ask certain questions about the File.

For example, isFile() returns true if the File represents a file, while isDirectory() returns true if it’s a

directory. Following program is a small utility that sends the contents of a file or directory to

standard output device.

try{

BufferedInputStream bis = new BufferedInputStream(inputstream, 4096);

. . .

bis.read();

}

catch(IOException ioe){ }

catch(Exception e){ }

import java.io.*;

class Display {

public static void main(String[] args) {

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

You have already summarized the methods provided by the File class as one of your assignments. If

not, please refer any Java book (D & D or Complete Reference).

The java.io.RandomAccessFile class

File file = new File(args[0]);

if(!file.exists() || !file.canRead())

System.out.println("Cannot read file.");

else{

if(file.isDirectory()){

String[] files = file.list();

for(int i=0;i<files.length; i++)

System.out.println(files[i]);

}

else{

try{

FileReader fr = new FileReader(file);

BufferedReader bf = new BufferedReader(fr);

String c;

while((c=bf.readLine())!=null){

System.out.println(c);

}

}

catch(FileNotFoundException fnfe){

System.out.println("file not found.");

}

catch(IOException ioe){

System.out.println("Error reading file.");

}

}

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The java.io.RandomAccessFile class provides the ability to read and write data from or to any

specified location in a file. RandomAccessFile implements both the DataInput and DataOutput

interfaces, so you can use it to read and write strings and primitive types. In other words,

RandomAccessFile defines the same methods for reading and writing data as DataInputStream and

DataOutputStream. However, because the class provides random, rather than sequential, access to

the file data, it’s not a subclass of either InputStream or OutputStream.

You can create a RandomAccessFile from a String pathname or a File object. The constructor also

takes a second String argument that specifies the mode of the file. Use ‘r’ for a read only file or “rw”

for read-­­write file.

When you create a RandomAccessFile in read only mode, Java tries to open the specified file. If the file

doesn’t exist, RandomAccessFile throws an IOExcepton. If, however, you are creating a

RandomAccessFile in read-­­write mode, the object creates the file if it doesn’t exist. The constructor can

still throw an IOException if some other I/O error occurs, so you still need to handle this exception. If

you try to write to a read-­­only file, the write method throws an IOException.

What makes a RandomAccessFile special is the seek() method. This method takes a ling value and

uses it to set the location for reading and writing in the file. You can use the getFilePointer() method

to get the current location. If you need to append data to the end of the file, use length() to determine

that location, then seek() to it. You can write or seek beyond the end of a file, but you can’t read

beyond the end of the file. The read() method throws an EOFException if you try to do this.

Serialization

Using a DataOutputStream, you could write an application that saves the data content of an arbitrary

object as simple types. However, Java provides an even more powerful mechanism called object

serialization that does almost all of the work for you. In its simplest form, object serialization is an

automatic way to save and load the sate of an object.

try{

RandomAccessFile raf = new RandomAccessFile(“file1.dat”, “rw”);

// or

File f = new File(“file1.dat”);

RandomAccessFile raf = new RandomAccessFile(f, “rw”);

}

catch(IOException ioe){ }

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Basically, an object of any class that Implements the Serializable interface can be saved and restored

from a stream. Special stream subclasses, ObjectInputStream and ObjectOutputStream, are used to

serialize primitive types and objects. Subclasses of Serializable classes are also serializable. The

default serialization mechanism saves the value of an object’s non-­­static and non-­­transient member

variables.

One of the most important things about serialization is that when an object is serialized, any object

references it contains are also serialized. Serialization can capture entire graphs of interconnected

objects and put them back together on the receiving end. The implication is that any object we

serialize must contain only references to other Serializable objects.

// How to write to an ObjectOutputStream?

import java.io.*;

class Name implements Serializable{

String name;

Name(){}

Name(String s){ name = s;}

void display(){System.out.println(name);}

}

public class WriteObjSer {

public static void main(String[] args) {

File f = new File("test.txt");

Name n = new Name("Rahul");

try{

FileOutputStream fileOut = new FileOutputStream(f);

ObjectOutputStream out = new

ObjectOutputStream(fileOut);

out.writeObject(n);

}

catch(Exception e){

System.out.println("Error "+e);

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

}

// How to read from an ObjectInputStream?

import java.io.*;

class Name implements Serializable{

String name;

Name(){}

Name(String s){ name = s;}

void display(){System.out.println(name);}

}

public class ReadObjSer {

public static void main(String[] args) {

File f = new File("test.txt");

Name n;

try{

FileInputStream fileIn = new FileInputStream(f);

ObjectInputStream in = new

ObjectInputStream(fileIn);

n =(Name) in.readObject();

n.display();

}

catch(Exception e) {

System.out.println("Error "+e);

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Java Database Connectivity (JDBC)

Introduction to JDBC

Java Database Connectivity (JDBC) is Sun Microsystems’ standard SQL database access interface,

providing uniform access to a wide range of relational database. It consists of a set of classes and

interfaces written in the Java programming language.

JDBC API Components

The JDBC API is designed to allow developers to create database front ends without having to

continually rewrite their code. JDBC provides application developers with a single API that is uniform

and database independent. The API provides a standard to write to and a standard that takes all of

the various application designs into account. The secret is a set of Java interfaces that are

implemented by a driver. The driver takes care of the translation of the standard JDBC calls into the

specific calls required by the database it supports.

JDBC is not a derivative of Microsoft’s Open Database Connectivity specification (ODBC). JDBC is

written entirely in java and ODBC is a C interface. Sun provides a JDBC-­­ODBC bridge that translates

JDBC to ODBC.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

There are two distinct layer within the JDBC API. They are

• The Driver Layer

• The Application Layer

DriverManager

Driver

Layer

Application

Layer

Driver

Connection

PreparedStatement Statement CallableStatement

ResultSet ResultSet ResultSet

The Driver Layer

The Driver class is an interface implemented by the driver vendor. The other important class is the

DriverManager class, which sits above the Driver and the Application layer. The DriverManager class

is responsible for loading and unloading drivers and making connections through drives. The Driver

interface allows the DriverManager and JDBC Application layers to exist independently of the

particular database used. The JDBC driver is an implementation of the Driver interface class.

The DriverManager class is really a utility class used to manage JDBC drivers. The class provides

methods to obtain a connection through a driver, register and de-­­register drivers, setup logging, and

set login timeouts for database access.

The Application Layer

The application encompasses three interfaces that are implemented at the Driver layer but are used

by the application developer. In java, the interface provides a means of using a general name to

indicate a specific object. The three main interfaces are Connection, Statement, and ResultSet. A

Connection object is obtained from the driver implementation through the

DriverManager.getConnection() method. Once a connection is obtained, the application developer

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

may create a Statement or PreparedStatement or CallableStatement object to issue against the

database. The result of a statement is a ResultSet, which contains the results of the particular

statement if any. A statement is a vehicle for sending SQL queries to the database and retrieving a set

of results. Statements can be SQL updates, inserts, delete, or some queries. The Statement interface

provides a number of methods designed to make the job of writing queries to the database easier. The

ResultSet interface defines methods for accessing tables of data generated as the result of executing a

Statement. ResultSet column values may be accessed in any order; they are indexed and may be

selected by either the name or the number (that starts from 1) of the column. ResultSet maintains the

position of the current row, starting with the first row of the data returned. The next() method moves

to the next row of the data.

Establishing a database connection

Retrieving data from database

try{

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String dbname = “jdbc:odbc:SampleDB”;

Class.forName(driver);

Connection conn = DriverManager.getConnection(dbname);

// execute the query

conn.close();

}catch(SQLException sqle){

System.out.println(“SQL Error.”)

}

try{

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String dbname = “jdbc:odbc:SampleDB”;

Class.forName(driver);

Connection conn = DriverManager.getConnection(dbname);

/**/

String query = “SELECT * FROM TABLENAME WHERE UNAME=?”;

PreparedStatement pt = conn.prepareStatement(query);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Inserting and Updating row of database

pt.setString(1,uname); //uname is an object

ResultSet rs = pt.executeQuery();

while(rs.next()) {

System.out.println(rs.getString(1) + . . .);

}

/**/

conn.close();

}catch(SQLException sqle){

System.out.println(“SQL Error.”)

}

try{

String driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

String dbname = “jdbc:odbc:SampleDB”;

Class.forName(driver);

Connection conn = DriverManager.getConnection(dbname);

/**/

String query = “insert into tablename values(?,?,?,. . .)”;

PreparedStatement pt = conn.prepareStatement(query);

pt.setString(1,uname); //uname is an object

pt.setString(2, . . .);

. . .

. . .

. . .

pt.executeUpdate();

/**/

/**/

query = “update tablename set col1 = ? . . . where . . . =?”;

pt = conn.prepareStatement(query);

pt.setString(1,uname); //uname is an object

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

pt.setString(2, . . .);

. . .

. . .

. . .

pt.executeUpdate();

/**/

conn.close();

}catch(SQLException sqle){

System.out.println(“SQL Error.”)

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Multimedia

Working with Audio

Java Sound provides a very high-­­quality 64-­­channel audio rendering and MIDI sound synthesis engine

that

• Enables consistent, reliable, high-­­quality audio on all Java platforms

•Minimizes the impact of audio-­­rich web pages on computing resources

• Reduces the need for high-­­cost sound cards by providing a software-­­only solution that

requires only a digital-­­to-­­analog converter (DAC)

• Supports a wide range of audio formats

The new sound engine is integrated into the Java Virtual Machine as a core library.

JDK 1.2 enables you to create and play AudioClips from both applets and applications. The clips can

be any of the following audio file formats:

• AIFF

• AU

• WAV

• MIDI (type 0 and type 1 files)

• RMF

The sound engine can handle 8-­­ and 16-­­bit audio data at virtually any sample rate. In JDK 1.2 audio

files are rendered at a sample rate of 22 kHz in 16-­­bit stereo. If the hardware doesn't support 16-­­bit

data or stereo playback, 8-­­bit or mono audio is output.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

There's no need to worry about the impact of audio-­­rich Web pages on computing resources. The Java

Sound engine minimizes the use of a system's CPU to process sound files. For example, a 24-­­voice MIDI

file uses only 20 percent of the CPU on a Pentium 90 MHz system.

The package java.applet.AudioClip defines an interface for objects that can play sound. An object that

implements AudioClip can be told to play() its sound data, stop() playing the sound or loop()

continually.

The Applet class provides a handy static method, newAudioClip(), that retrieves sounds from files or

over the network. This method takes an absolute or relative URL to specify where the audio file is

located. The following applicationMusicPlayergives a simple example.

// MusicPlayer.Java

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

class PlayerBox extends JFrame{

JPanel p = new JPanel();

JButton play;

JButton stop;

JButton loop;

public PlayerBox(final AudioClip sound){

play = new JButton("Play");

stop = new JButton("Stop");

loop = new JButton("Loop");

play.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

sound.play();

}

});

stop.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

sound.stop();

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Working with Video

To play with video files, you need to download and install one of Java’s standard extension APIs, the

Java Media Framework. The JMF defines a set of interfaces and classes in the javax.media and

javax.media.protocol packages. JFM provides an interface called Player. Specific implementations of

Player deal with defferent media types like .mov and .avi files. Players are handled out by a high level

class in the JMF called Manager. One way to obtain a Player is to specify the URL of a movie:

}

});

loop.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

sound.loop();

}

});

p.add(play);

p.add(stop);

p.add(loop);

getContentPane().add(p);

setVisible(true);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

public class MusicPlayer{

public static void main(String[] args){

try{

java.io.File f = new java.io.File(args[0]);

java.applet.AudioClip s = Applet.newAudioClip(f.toURL());

new PlayerBox(s);

}

catch(Exception e){ }

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Player player = Manager.createPlayer();

Because video files are so large, and playing them requires significant system resources, Players have

a multi-­­step lifecycle from the time they’re created to the time they actually play something. One of

the steps in lifecycle is realizing. In this step, the Player finds out what system resources it will need

to actually play the media file.

Player.realize();

When the player is finished realizing, it sends out an event called RealizeCompleteEvent. Once you

receive this event, you can obtain a component that will show the media. The Player has to be

realized first so that it knows important information, like how big the component should be. Getting

the component is easy:

Component c = player.getVisualComponent();

Now we just need to add the component to the screen somewhere.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Working with Graphics

Following are the list of packages that are useful while working with graphics.

• java.awt

• java.awt.geom.

• java.awt.color

• java.awt.image

• java.awt.font

• java.awt.print

Collectively, these classes make up most of the 2D API, a comprehensive API for drawing shapes, text

and images. An instance of Java.awt.Graphics is called a graphics context. There is another abstract

class Graphics2D which is derived from Graphics abstract class. It represents a drawing surface such

as component’s display area, a page on a printer etc. a graphics context provides methods for drawing

three kinds of graphics objects: shapes, text, and images. It is called a graphics context because it also

holds contextual information about the drawing area. This information includes the drawing areas

clipping region, painting color, transfer mode, text font, and geometric transformation.

Rendering

One of the strengths of the 2D API is that shapes, text and images are manipulated in many of the

same ways. Rendering is the process of taking some collection of shapes, text, and images and figuring

out how to represent them by coloring pixels on a screen or printer. Graphics2D supports four

rendering operations.

• Draw the outline of the shape with the draw() method.

• Fill the interior of a shape with the fill() method.

• Draw some text, with the drawString() method.

• Draw an image, with any of the many forms of the drawImage() method.

How to draw different shapes

The following Applet shows the drawing of different shapes.

public void paint(Graphics g){

Graphics2D g2 = (Graphics2D)g; // type conversion

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Color

Color is not a property of a particular rectangle, string or other thing you may draw. Rather color is a

part of the Graphics object that does the drawing. To change colors you change the color of your

Graphics object. Then everything you draw from that point forward will be in the new color, at least

until you change it again.

When an applet starts running the color is set to black by default. You can change this to red by

calling g.setColor(Color.red). You can change it back to black by calling g.setColor(Color.black). The

following code fragment shows how you'd draw a pink String followed by a green one:

g.setColor(Color.pink);

g.drawString("This String is pink!", 50, 25);

g.setColor(Color.green);

g.drawString("This String is green!", 50, 50);

Remember everything you draw after the last line will be drawn in green. Therefore before you start

messing with the color of the pen its a good idea to make sure you can go back to the color you

started with. For this purpose Java provides the getColor() method. You use it like follows:

Color oldColor = g.getColor();

g.setColor(Color.pink);

g.drawString("This String is pink!", 50, 25);

g.setColor(Color.green);

g.drawString("This String is green!", 50, 50);

g.setColor(oldColor);

g2.drawLine(10,10,200,200);

g2.setColor(Color.red);

g2.fillRect(10,10,200,200);

Color c = new Color(25,30,189);

g2.drawOval(100,100,200,200);

Font f = new Font(“Monospaced”, Font.BOLD, 18);

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

In Java 1.1, the java.awt.SystemColor class is a subclass of java.awt.Color which provides color

constants that match native component colors. For example, if you wanted to make the background

color of your applet, the same as the background color of a window, you might use this init() method:

public void paint (Graphics g) {

g.setColor(SystemColor.control);

g.f illRect(0, 0, this.getSize().width, this.getSize().height);

}

These are the available system colors:

• SystemColor.desktop // Background color of desktop

• SystemColor.activeCaption // Background color for captions

•SystemColor.activeCaptionText // Text color for captions

• SystemColor.activeCaptionBorder // Border color for caption text

• SystemColor.inactiveCaption // Background color for inactive captions

• SystemColor.inactiveCaptionText // Text color for inactive captions

• SystemColor.inactiveCaptionBorder // Border color for inactive captions

• SystemColor.window // Background for windows

• SystemColor.windowBorder // Color of window border frame

• SystemColor.windowText // Text color inside windows

• SystemColor.menu // Background for menus

• SystemColor.menuText // Text color for menus

• SystemColor.text // background color for text

• SystemColor.textText // text color for text

• SystemColor.textHighlight // background color for highlighted text

• SystemColor.textHighlightText // text color for highlighted text

• SystemColor.control // Background color for controls

• SystemColor.controlText // Text color for controls

• SystemColor.controlLtHighlight // Light highlight color for controls

• SystemColor.controlHighlight // Highlight color for controls

• SystemColor.controlShadow // Shadow color for controls

• SystemColor.controlDkShadow // Dark shadow color for controls

• SystemColor.inactiveControlText // Text color for inactive controls

• SystemColor.scrollbar // Background color for scrollbars

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

• SystemColor.info // Background color for spot-­­help text

• SystemColor.infoText // Text color for spot-­­help text

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Loading Images

Images in Java are bitmapped GIF or JPEG files that can contain pictures of just about anything. You

can use any program at all to create them as long as that program can save in GIF or JPEG format.

Images displayed by Java applets are retrieved from the web via a URL that points to the image file.

An applet that displays a picture must have a URL to the image it’s going to display. Images can be

stored on a web server, a local hard drive or anywhere else the applet can point to via a URL. Make

sure you put your images somewhere the person viewing the applet can access them. A file URL that

points to your local hard drive may work while you're developing an apple, but it won't be of much

use to someone who comes in over the web.

Typically you'll put images in the same directory as either the applet or the HTML file. Though it

doesn't absolutely have to be in one of these two locations, storing it there will probably be more

convenient. Put the image with the applet .class file if the image will be used for all instances of the

applet. Put the applet with the HTML file if different instances of the applet will use different images.

A third alternative is to put all the images in a common location and use PARAMs in the HTML file to

tell Java where the images are.

If you know the exact URL for the image you wish to load, you can load it with the getImage() method:

URL imageURL = new URL("http://www.prenhall.com/logo.gif");

java.awt.Image img = this.getImage(imageURL);

You can compress this into one line as follows:

Image img = this.getImage(new URL("http://www.prenhall.com/logo.gif"));

The getImage() method is provided by java.applet.Applet. The URL class is provided by java.net.URL.

Be sure to import it.

Some Basic Terminologies

Animation
Double Buffering
Polygon
Composite (AlphaComposite)
Stroke
Transformation
Clipping
Glyph

http://www.prenhall.com/logo.gif
http://www.prenhall.com/logo.gif

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Network Programming

Network Basics

Network is the connection of more than one computer that can share information and resources.

Computers that are in network should follow some rules for communicating with each other. The rule

of communication is called protocol. Computers running on the Internet communicate to each other

using either the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

Transmission Control Protocol (TCP)

When two applications want to communicate to each other reliably, they establish a connection and

send data back and forth over that connection. This is analogous to making a telephone call. TCP

guarantees that data sent from one end of the connection actually gets to the other end and in the

same order it was sent. Otherwise, an error is reported.

TCP provides a point-­­to-­­point channel for applications that require reliable communications. The

Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Telnet are all examples of

applications that require a reliable communication channel. The order in which the data is sent and

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

received over the network is critical to the success of these applications. When HTTP is used to read

from a URL, the data must be received in the order in which it was sent. Otherwise, you end up with a

jumbled HTML file, a corrupt zip file, or some other invalid information.

Definition: TCP (Transmission Control Protocol) is a connection-­­based protocol that provides a

reliable flow of data between two computers.

User Datagram Protocol (UDP)

Definition: UDP (User Datagram Protocol) is a protocol that sends independent packets of data,

called datagrams, from one computer to another with no guarantees about arrival. UDP is not

connection-­­based like TCP.The UDP protocol provides for communication that is not

guaranteed between two applications on the network. UDP is not connection-­­based like TCP.

Rather, it sends independent packets of data, called datagrams, from one application to another.

Sending datagrams is much like sending a letter through the postal service: The order of

delivery is not important and is not guaranteed, and each message is independent of any other.

For many applications, the guarantee of reliability is critical to the success of the transfer of

information from one end of the connection to the other. However, other forms of communication

don't require such strict standards. In fact, they may be slowed down by the extra overhead or the

reliable connection may invalidate the service altogether.

Consider, for example, a clock server that sends the current time to its client when requested to do so.

If the client misses a packet, it doesn't really make sense to resend it because the time will be

incorrect when the client receives it on the second try. If the client makes two requests and receives

packets from the server out of order, it doesn't really matter because the client can figure out that the

packets are out of order and make another request. The reliability of TCP is unnecessary in this

instance because it causes performance degradation and may hinder the usefulness of the service.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

IP Address and Ports

Generally speaking, a computer has a single physical connection to the network. All data destined for

a particular computer arrives through that connection. However, the data may be intended for

different applications running on the computer. So how does the computer know to which application

to forward the data? The answer by using the ports.

Data transmitted over the Internet is accompanied by addressing information that identifies the

computer and the port for which it is destined. The computer is identified by its 32-­­bit IP address,

which IP uses to deliver data to the right computer on the network. Ports are identified by a 16-­­bit

number, which TCP and UDP use to deliver the data to the right application.

In connection-­­based communication such as TCP, a server application binds a socket to a specific port

number. This has the effect of registering the server with the system to receive all data destined for

that port. A client can then rendezvous with the server at the server's port, as illustrated here:

Definition:The TCP and UDP protocols use ports to map incoming data to a particular process

running on a computer.

In datagram-­­based communication such as UDP, the datagram packet contains the port number of its

destination and UDP routes the packet to the appropriate application, as illustrated in this figure:

Port numbers range from 0 to 65,535 because ports are represented by 16-­­bit numbers. The port

numbers ranging from 0 -­­ 1023 are restricted; they are reserved for use by well-­­known services such

as HTTP and FTP and other system services. These ports are called well-‐‐known ports. Your applications

should not attempt to bind to them.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Clients and Servers

Normally, a server runs on a specific computer and has a server-­­socket that is bound to a specific port

number. The server just waits, listening to the socket for a client to make a connection request.

On the client-­­side: The client knows the hostname of the machine on which the server is running and

the port number to which the server is connected. To make a connection request, the client tries to

rendezvous with the server on the server's machine and port.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new

socket bound to a different port. It needs a new socket (and consequently a different port number) so

that it can continue to listen to the original socket for connection requests while tending to the needs

of the connected client.

On the client side, if the connection is accepted, a socket is successfully created and the client can use

the socket to communicate with the server. Note that the socket on the client side is not bound to the

port number used to rendezvous with the server. Rather, the client is assigned a port number local to

the machine on which the client is running.

The client and server can now communicate by writing to or reading from their sockets.

A socket is one endpoint of a two-­­way communication link between two programs running on the

network. A socket is bound to a port number so that the TCP layer can identify the application that data

is destined to be sent. The java.net package in the Java platform provides a class, Socket, that

implements one side of a two-­­ way connection between your Java program and another program on the

network. The Socket class sits on top of a platform-­­dependent implementation, hiding the details of

any particular system from your Java program. By using the java.net.Socket class instead of relying on

native code, your Java programs can communicate over the network in a platform-­­independent

fashion.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Additionally, java.net includes the ServerSocket class, which implements a socket that servers can use

to listen for and accept connections to clients. This lesson shows you how to use the Socket and

ServerSocket classes.

Stream-­‐based programming

A client application opens a connection to a server by constructing a Socket that specifies the

hostname and port number of the desired server. The following code is a complete program that

requests the connection to server and sends some string to the server and also receives some

message from server.

//Client.Java

import java.net.*;

import java.io.*;

class Client {

public static void main(String[] args) {

Socket client;

try{

client = new Socket(“hostname”,1234);

InputStream in = server.getInputStream();

OutputStream out = server.getOutputStream();

BufferedReader scanf = new BufferedReader(new

InputStreamReader(in));

PrintWriter pout = new PrintWriter(out, true);

pout.println("Hello! I am a Client");

String someString = scanf.readLine();

System.out.println("From Server: "+someString);

client.close();

}

catch(Exception e){}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

After a connection is established, a server application uses the same kind of Socket object for its side

of the communications. However, to accept a connection from a client, it must first create a

ServerSocket, bound to the correct port. The following program first give connection to the client by

creating dedicated Socket class and receives some message send by the client and it also sends some

string to the client.

}

// Server.Java

import java.net.*;

import java.io.*;

class Server {

public static void main(String[] args) {

boolean finished = false;

try{

ServerSocket listener = new ServerSocket(1234);

while(!finished){

Socket to_client = listener.accept();

InputStream in = client.getInputStream();

OutputStream out = client.getOutputStream();

PrintWriter pout = new PrintWriter(out, true);

BufferedReader scanf = new BufferedReader(new

InputStreamReader(in));

String someString = scanf.readLine();

System.out.println("From Client: "+someString);

pout.println("Hello! this is server talking to you.");

to_client.close();

}// end of while

listener.close();

}// end of for

catch(Exception ie) {

System.out.println("Error");

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Datagram-­‐based programming

Datagram based programming uses DatagramSocket and DatagramPacket classes. DatagramSocket is

created to receive and sent the datagram packets. DatagramPackets are used to create the datagram

packets that are sent through DatagramSocket. Each DatagramPacket contains the full IP address and

port number to which it is destined.

// Dclinet.java using UDP Protocol

import java.net.*;

class DClient {

public static void main(String[] args) {

DatagramSocket ds;

DatagramPacket dp;

try{

InetAddress addr = InetAddress.getByName("localhost");

//localhost = computer to which data has to be sent.

//while(true){

ds = new DatagramSocket(5000);

String s = "message";

dp = new DatagramPacket(s.getBytes(), s.getBytes().length, addr, 4567);

ds.send(dp);

byte[] b = new byte[100];

DatagramPacket dr = new DatagramPacket(b, b.length);

ds.receive(dr);

System.out.println(new String(dr.getData(), dr.getOffset(),

dr.getLength()) + dr.getLength());

ds.close();

//}

}

catch(SocketException se){

System.out.println(se.getMessage());

}

catch(Exception e){

System.out.println("Error 2.");

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

The following program illustrates the server programming using UDP protocol.

}

}

}

// Dserver.java using UDP Protocol

import java.net.*;

class DServer {

public static void main(String[] args) {

DatagramSocket ds;

DatagramPacket dp;

try{

ds = new DatagramSocket(4567);

while(true){

byte[] greet = new byte[100];;

dp = new DatagramPacket(greet, greet.length);

ds.receive(dp);

ds.send(dp);

//ds.close();

}

}

catch(SocketException se){

System.out.println(se.getMessage());

}

catch(Exception e){

System.out.println("Error 1.");

}

}

}

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Multi-­‐threaded Server

To keep the Server example simple, we designed it to listen for and handle a single connection

request. However, multiple client requests can come into the same port and, consequently, into the

same ServerSocket. Client connection requests are queued at the port, so the server must accept the

connections sequentially. However, the server can service them simultaneously through the use of

threads -­­ one thread per each client connection.

The basic flow of logic in such a server is this:

while (true) {

accept a connection ;

create a thread to deal with the client ;

end while

The thread reads from and writes to the client connection as necessary. The following program is

designed to server the multiple clients. The server is referred as Chat Server and is an example of multi-

­­threaded server.

// Multi-­­threaded chat server →→ ChatServer.Java using TCP protocol

import java.net.*; import java.util.*; import java.io.*;

class ChatServer {

public static void main(String[] args) {

Hashtable clients = new Hashtable();

try{

ServerSocket ss = new ServerSocket(4444);

while(true){

Socket s = ss.accept();

PrintWriter pw = new PrintWriter(s.getOutputStream(), true);

BufferedReader br = new BufferedReader(new

InputStreamReader(s.getInputStream()));

pw.print("Enter your name: "); pw.flush();

String n = br.readLine();

PrimeThread pt = new PrimeThread(s, pw, br, clients, n);

new Thread(pt).start();

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

}

}catch(Exception e){ }

}

} // end of class ChatServer

class ChatThread implements Runnable{

Socket socket; PrintWriter pout; String name;

BufferedReader scanf; Hashtable clients;

PrimeThread(Socket s, PrintWriter pw, BufferedReader br, Hashtable h,

String name){

socket = s;

clients = h;

pout = pw;

scanf = br;

this.name = name;

try{

clients.put(name, pout);

}

catch(Exception e){}

}

public void run(){

String msg=null;

try{

while(true){

msg = scanf.readLine();

if(msg.equals("quitChat")){

break;

}

PrintWriter send;

for (Enumeration e = clients.keys() ;

e.hasMoreElements() ;) {

String s = (String)e.nextElement();

send = (PrintWriter)clients.get(s);

send.println("["+name+"]: "+msg);

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

send.flush();

}

}

socket.close();

}catch(Exception e){System.out.println("Error 2"); }

}

}// end of ChatThread

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Distributed Applications

Introduction to Distributed Applications and Objects

Some applications by their very nature are distributed across multiple computers because of one or

more of the following reasons:

• The data used by the application are distributed

• The computation is distributed

• The users of the application are distributed

Data are Distributed

Some applications must execute on multiple computers because the data that the application must

access exist on multiple computers for administrative and ownership reasons. The owner may permit

the data to be accessed remotely but not stored locally. Or perhaps the data cannot be co-­­located and

must exist on multiple heterogeneous systems for historical reasons.

Computation is Distributed

Some applications execute on multiple computers in order to take advantage of multiple processors

computing in parallel to solve some problem. Other applications may execute on multiple computers

in order to take advantage of some unique feature of a particular system. Distributed applications can

take advantage of the scalability and heterogeneity of the distributed system.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Users are Distributed

Some applications execute on multiple computers because users of the application communicate and

interact with each other via the application. Each user executes a piece of the distributed application

on his or her computer, and shared objects, typically execute on one or more servers.

A distributed object is an object that can be accessed remotely. This means that a distributed object

can be used like a regular object, but from anywhere on the network. An object is typically considered

to encapsulate data and behavior. The location of the object is not critical to the user of the object. A

distributed object might provide its user with a set of related capabilities. The application that

provides a set of capabilities is often referred as a service.

Distributed objects are most often deployed in a client-­­server configuration. Objects, themselves are

servers. They respond to message requests. They provide a service or resource to a requestor. To

distinguish this type of server from a process in a client-­­server system consider about the objects that

live on the server-­­side or on the client-­­side. The server side objects offer services and resources.

Client-­­side objects request services and resources.

So, there are number of reasons for developing applications with distributed objects.

• Distributed objects might be used to share information across applications or users.

• Distributed objects might be used to synchronize activity across several machines.

• Distributed objects might be used to increase performance associated with a particular task.

• Distributed objects are a way to distribute computing across a network of computers, which

makes it easier to accommodate unpredictable growth.

Distributed Object Infrastructure

Following are some of the important infrastructure technologies for developing distributed objects.

We will concentrate on the RMI technology only.

•Remote Method Invocation (RMI)

• Common Object Request Broker Architecture (CORBA)

• Microsoft’s Distributed Component Object Model (DCOM)

• Enterprise Java Beans (EJB)

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

Introduction to RMI

Remote Method Invocation (RMI) technology, first introduced in JDK TM 1.1, elevates network

programming to a higher plane. Although RMI is relatively easy to use, it is a remarkably powerful

technology and exposes the average Java developer to an entirely new paradigm-­­-­­the world of

distributed object computing.

RMI's purpose is to make objects in separate virtual machines look and act like local objects. The

virtual machine that calls the remote object is sometimes referred to as a client. Similarly, we refer to

the VM that contains the remote as a server.

RMI lets us get a reference to an object on a remote host and use it as if it were in our own virtual

machine. RMI lets us invoke methods on remote objects, passing real java objects as arguments and

getting real java objects as return valued. It can also use dynamic class loading and security managers

to transport Java classes safely.

Remote Objects and Non-­‐Remote Objects

Before an object can be used with RMI, it must be serializable. But that’s not sufficient. Remote

objects in RMI are real distributed objects. As the name suggests, a remote object can be an object on

a different machine; it can also be an object on local host. The term remote means that the object is

used through a special kind of object reference that can be passed over the network. Like normal Java

objects, remote objects are passed by reference. Regardless of where the reference is used, the

method invocation occurs at the original object, which still lives on its original host. If a remote host

returns a reference to one of its objects to you, you can call the objects; the actual method invocations

will happen on the remote host, where the object resides.

Non-­­remote objects are simpler. They are just normal serializable objects. The catch is that when you

pass a non-­­remote objects over the network it is simply copied. So references to the object on one host

are not the same as those on the remote host. Non-­­remote objects are passed by copy or value as

opposed to pass by reference.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

RMI Architecture

The design goal for the RMI architecture was to create a Java distributed object model that integrates

naturally into the Java programming language and the local object model. RMI architects have

succeeded; creating a system that extends the safety and robustness of the Java architecture to the

distributed computing world. RMI architecture consists of two main parts.

• Interface

• RMI Architecture Layer

Interfaces: The Heart of RMI

The RMI architecture is based on one important principle: the definition of behavior and the

implementation of that behavior are separate concepts. RMI allows the code that defines the behavior

and the code that implements the behavior to remain separate and to run on separate JVMs.

This fits nicely with the needs of a distributed system where clients are concerned about the

definition of a service and servers are focused on providing the service.

Specifically, in RMI, the definition of a remote service is coded using a Java interface. The

implementation of the remote service is coded in a class. Therefore, the key to understanding RMI is

to remember that interfaces define behavior and classes define implementation.

It is important to remember that a Java interface does not contain executable code. RMI supports two

classes that implement the same interface. The first class is the implementation of the behavior, and it

runs on the server. The second class acts as a proxy for the remote service and it runs on the client.

RMI Architecture Layer

The RMI implementation is essentially built from three abstraction layers. The first is theStub and

Skeleton layer, which lies just beneath the view of the developer. This layer intercepts method calls

made by the client to the interface reference variable and redirects these calls to a remote RMI

service.

The next layer is the Remote Reference Layer. This layer understands how to interpret and manage

references made from clients to the remote service objects. In JDK 1.1, this layer connects clients to

remote service objects that are running and exported on a server. The connection is a one-­­to-­­one

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

(unicast) link. In the Java 2 SDK, this layer was enhanced to support the activation of dormant remote

service objects via Remote Object Activation.

The transport layer is based on TCP/IP connections between machines in a network. It provides

basic connectivity, as well as some firewall penetration strategies.

Stub and Skeleton Layer

The stub and skeleton layer of RMI lie just beneath the view of the Java developer. In this layer, RMI

uses the Proxy design pattern. In the Proxy pattern, an object in one context is represented by

another (the proxy) in a separate context. The proxy knows how to forward method calls between the

participating objects.

Stub and Skeletons are used in the implementation of remote objects. When you invoke a method on

a remote object, you are actually calling some local code that serves as proxy for that object. This is

the stub class. The skeleton is another proxy that lives with the real object on its original host. It

receives remote method invocations from the stub and passes them to the object. In the Java 2 SDK

implementation of RMI, the new wire protocol has made skeleton classes obsolete. RMI uses

reflection to make the connection to the remote service object. You only have to worry about skeleton

classes and objects in JDK 1.1 and JDK 1.1 compatible system implementations.

Remote Reference Layer

The Remote Reference Layers defines and supports the invocation semantics of the RMIconnection.

This layer provides a RemoteRef object that represents the link to the remote service implementation

object.

The stub objects use the invoke () method in RemoteRef to forward the method call. The RemoteRef

object understands the invocation semantics for remote services.

Transport Layer

The Transport Layer makes the connection between JVMs. All connections are stream-­­based network

connections that use TCP/IP.

Even if two JVMs are running on the same physical computer, they connect through their host

computer's TCP/IP network protocol stack. (This is why you must have an operational TCP/IP

configuration on your computer to run the Exercises in this course). The following diagram shows the

unfettered use of TCP/IP connections between JVMs.

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

As you know, TCP/IP provides a persistent, stream-­­based connection between two machines based

on an IP address and port number at each end. Usually a DNS name is used instead of an IP address. In

the current release of RMI, TCP/IP connections are used as the foundation for all machine-­­to-­­ machine

connections.

On top of TCP/IP, RMI uses a wire level protocol called Java Remote Method Protocol (JRMP). JRMP is

a proprietary; stream-­­based protocol that is only partially specified is now in two versions. The first

version was released with the JDK 1.1 version of RMI and required the use of Skeleton classes on the

server. The second version was released with the Java 2 SDK. It has been optimized for performance

and does not require skeleton classes.

Naming Remote Objects

Before implementing the RMI technology, there might be one question to be solved that is: "How does

a client find an RMI remote service?" The answer to this question is by naming remote objects. Clients

find remote services by using a naming or directory service. A naming or directory service is run on a

well-­­known host and port number.

RMI can use many different directory services, including the Java Naming and Directory Interface

(JNDI). RMI itself includes a simple service called the RMI Registry, rmiregistry. The RMI Registry

runs on each machine that hosts remote service objects and accepts queries for services, by default

on port 1099.

On a host machine, a server program creates a remote service by first creating a local object that

implements that service. Next, it exports that object to RMI. When the object is exported, RMI creates

a listening service that waits for clients to connect and request the service. After exporting, the server

registers the object in the RMI Registry under a public name.

On the client side, the RMI Registry is accessed through the static class Naming. It provides the

method lookup() that a client uses to query a registry. The method lookup() accepts a URL that

specifies the server host name and the name of the desired service. The method returns a remote

reference to the service object. The URL takes the form:

rmi://<host_name> [:<name_service_port>] /<service_name>

BCA V Semester Advance Programming in Java

 STUDY MATERIAL OF DEPARMENT OF B.C.A. ,MAHARAJA COLLEGE, ARA

where the host_name is a name recognized on the local area network (LAN) or a DNS name on the

Internet. The name_service_port only needs to be specified only if the naming service is running on a

different port to the default 1099.

Creating Distributed Applications Using RMI

A working RMI system is composed of several parts.

• Interface definitions for the remote services

•Implementations of the remote services

• Stub and Skeleton files

• A server to host the remote services

• An RMI Naming service that allows clients to find the remote services

• A client program that needs the remote services

Altogether you create the following files in some directory. (Examples)

• ServiceInterface.java

• ServiceImp.java

• Server.java

• Client.java

When you compile these source files, you’ll get the following classes.

• ServiceInterface.class (Client, Server)

• ServiceImp.class (Server)

• Server.class (Server)

• Client.class (Client)

To generate the stub class, you need to recompile ServiceImp.class using rmic compiler. After

compiler, you’ll get two classes. They are:

• ServiceImp_Stub.class (Server, Client)

• ServiceImp_Skel.lass (you don’t need this one.)

After putting the corresponding classes in respective computers, you need to start rmiregistry.

➢➢ start rmiregistry

Now, you can start RMI server and use client program to receive service from the RMI server.

Following are the complete Java programs for creating distributes applications.

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

Here, ServiceImp.java file extends another class called UnicastRemoteObject. When a subclass of

UnicastRemoteObject is constructed, the RMI runtime system automatically “exports” it to start

listening for network connections from remote interfaces (stubs) for the object.

// ServiceInterface.java

import java.rmi.*;

public interface ServiceInterface extends Remote{

int getSum(int x, int y) throws RemoteException;

} // end of interface

// ServiceImp.java

import java.rmi.*;

import Java.rmi.server.*;

public class ServiceImp implements ServiceInterface

extends UnicastRemoteObject{

public ServiceImp() throws RemoteException{}

public int getSum(int x, int y) throws RemoteException {

return x + y;

}

}// end of class ServiceImp that implements ServiceInterface

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

// Server.java

import java.rmi.*;

import java.net.*;

public class Server{

public static void main(String[] args){

try{

ServiceImp service = new ServiceImp();

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

Naming.rebind("RemoteService", service);

}catch(Exception e){

System.out.println(e.getMessage());

}

}

} // end of class Server

// Client.Java

import java.rmi.*;

public class Client{

public static void main(String[] args){

try{

String url = "rmi://192.168.0.0/RemoteService";

ServiceInterface s=(ServerInterface)Naming.lookup(url);

int n1 = Integer.parseInt(args[0]);

int n2 = Integer.parseInt(args[1]);

int sum = s.getSum(n1,n2);

System.out.println("Sum: "+sum);

}catch(Exception e){

System.out.println(e.getMessage());

}

}

} // end of class Client

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

• Arranging component on user interface :-

• Layout manager:- The component will added to

component window by default mechanism. The

programmer could not control the way . The component

were added to window by using Layout manager.

Programmer can give more control over the layout of an

interface.

The AWT contain five basic layout manager:-
I. Flow layout

II. Border layout

III. Grid layout

IV. Gridbag layout

V. Card layout

 The layout managers are used to position the component in
an Applet or panel or frame to set a particular layout manager
setLayout() method.

1) FlowLayout :- The Flowlayout is a default layout manager

used for Applet class. In a Flowlayout manager the

components are layout in a sequence one after another in a

rows. The Flowlayout places the component as a text place

in Ms - word document where the text wrapping feature is

develope . In another word the flowlayout organize the

component in order left to right . We can use to following

constructor to create flowlayout.

2) Public FlowLayout():- This constructor creates a

Flowlayout with center alingnment and living a Horizantal

and vertical spaces of 5 pixel between the components.

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

3) Public Flowlayout (int align) :- This constructor creates

a flowlayout with specified alignment and living a

Horizantal and vertical spaces of 5 pixel between the

components . The valid values of aligned arguments are

a) LEFT

b) RIGHT

c) CENTER

 These values are used as…….Flowlayout.LEFT,
Flowlayout.RIGHT and Flowlayout.CENTER.

4) Gridlayout :- The Gridlayout divide a container into rows

and columns . The components are added to the layout in

cells. The Gridlayout class of Java enable to create . All the

components in Grids are of the same size . The position of a

component in a grid is determined by the order in which

the components are added to the grid . The components are

arranged in a form of Grid consisting row and columns.

Components are added from left to right and top to bottom

. Gridlayout can be gridded by using following constructor.

I. public Gridlayout ():-

 This construction creates a grid – layout with a default of
column per component in a single Row.

II. public Gridlayout (int x int c) :-

 This constructor creates grid with the specified no. of rows and
column.

III. public Gridlayout (int r,int c, int hgap,int vgap):-

 This constructor creates a gridlayout with specified no. of rows
and columns and the specified horizontal and vertical spaces

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

between the component.
Ques. W. a. p to show the use of Flowlayout Manager.
 import java.awt.*;
 import java .awt.event.*;
 import java.applet .*;
 public class flowdemo extends Applet
 {
 Public void init()
 {
 setlayout (new Flowlayout (Flowlayout.CENTER));
 Button a, b, c;
 a = new Button(“ADD”);
 b=new Button(“UPDATE”);
 c= new button(“DELETE”);
 }
}
Ques. W.a.p to show the use of Gridlayout.
Sol :- import java.awt.*;
 import java.awt.event.*;
 import java . applet .*;
public class griddemo extends Applet
{
 public void init()
 {
 Gridlayout g= new Gridlayout(2,3);
 Setlayout(g);
 Label l=new Label(“ “);
 Button b (new Button(“ADD”));
 Button b2 = new Button (“Delete”);
 add(b2);
 add (1);
 Button b3 =new Button (“Modify”);

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

 add(b3);
 }
}
3. Border layout :- Border layout divides the layout into 5
section… east , west, north,south and center. The central
component is the largest and the other component surrounding
it when be smaller .A border layout is created by either 0
argument . once the layout manager is set a component is added
by using following ststement
 add(component , place)
The argument place specifies the region in the layout manager
which is …..
 BorderLayout.NORTH
BorderLayout.SOUTH
BorderLayout. EAST
BorderLayout.WEST
BorderLayout.CENTER
and the other argument specifies the component to be added .
The setLayout() is used for applying borderlayout to a container.
The various constructor used are given below….

a. public BorderLayout() :- This constructor creates a

borderLayout with no spaces between component.

b. public BorderLayout(int hgap):- This constructor

creates a border layout with specifying horizontal spaces

with the component .

ques. W.a.p to show the use of BorderLayout.
Sol:- import java.awt.*;
import java . awt.event.*;
public class Borderdemo extends Applet
{
 public void init()

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

{
 Setlayout(new BorderLayout 0);
 Button b1,b2,b3,b4,b5;
 b1=new Button(“EAST”);
b2=new Button(“WEST”);
b3=new Button(“NORTH”);
b4=new Button(“SOUTH”);
b5=new Button(“CENTER”);
add (b1,BorderLayout.EAST);
add(b2,BorderLayout.WEST);
add(b3,BorderLayout.NORTH);
add(b4,BorderLayout.SOUTH);
add(b5,BorderLayout.CENTER);

 }
}
CardLayout :- CardLayout is used to implement an area that
contains different component at different time .The cardLayout
is used unique among otherLayout manager in that it stores
several different layout . Each layout thought of as several index
card in a deck that can be suffle .The following constructor is
used to create cardlayout…….

1. public cardLayout() :- The constructor creates a

cardlayout with default one column per component in a

single row.

2. public cardLayout (int h,int v) :- This constrctor creates a

new cardlayout with specified horizontal and vertical gaps.

4). GridBagLayout :- The gridbag Layout is complicated or
flexible Gridbag Layout places component in a grid of rows
and columns.not all row necessary have the same height
similar the not all column necessary have same width . Grid
BagLayout places component of preferred size . The default

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

constructor is used to create a Gridbag Layout Manager.
Ques. W.a.p to show the use of Gridbag Layout.
Sol :- import java . awt.*;
import java . awt .event.*;
import java .applet.Applet.*;
public class gridbag extends Applet implements
Actionlistener
{
 Button b1,b2,b3;
 Textfield text1;
public void init()
{
 GridBagLayout g = new GridbagLayout();
GridBag Contraints Constraints = new GridBagConstraints();
setLayout(g);
Constraints.weight=1;
b1=newButton(“Button 1”);
g.setContraints(b1 , constraints);
b1.setActionCommand(“Button1”);
add(Button 1);
Constraints.weight=2;
b2=newButton(“Button 2”);
g.setContraints(b2 , constraints);
b2.setActionCommand(“Button2”);
add(Button 2);
Constraint.weight =3;
 B3=newButton(“Button 3”);
g.setContraints(b3 , constraints);
b3.setActionCommand(“Button3”);
add(Button 3);
Text1=new Textfield();
Constraints.gridwidth(GridBagConstraint.REMAINDER);

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

g.setConstraints(Text 1.constraint);
public void actionPerformed(ActionEvent a)
{

Text1.setText(“yourchoice”+(Button)a.getsource().getActio
nCommand());

}
}
➢ Swing Programming:-

We can built user interface with Awt (Applet Window tools).
There is an Alternative method for building user Interface &
this is called swing.Swing is a set of class that provides more
powerful and flexible components than Awt . In addition to
Button, checkboxes, labels etc. . Swing provide several other
Interfaces like ….Scroll panes , tab panes , tree , tables ,etc .
Swing is a set of package build on more no. of predefined
classes which covers 250 classes for user interface
component . Swing components are collection of light
weight visual components that provides a replacement for
heavy weight Awt components.

➢ Light weight v/s Heavy weight:-

Each Awt component gets its own operating platform
window. In extended programming a large no. of such
windows shows performance and uses of a great deal of
memory such components are called Heavy weight . Swing
control on other hand are simply drawn as image in a
container and don`t have an operating platform windows of
their own . So, they uses few resources therefore they are
called Light weight.

➢ Working in swing :-

Swing is the extend form of Awt component because we use

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

Javax and with GUI component . we use Javax .swing
package for swing classes.

Syntax for importing swing package is given below…….

import java . swing . *;

We use JApplet in place of Applet class .JApplet supports
various panes such as content pane , glasspane, and the
rulepane . when we adding a component to an intereface of
JApplet and don`t the add() of Applet class. Instead.call
add () for the content pane of JApplet object . The content
pane of JApplet objet. The content pane can be open by the
statement given below…..

Container getContentPane()

The add() of container can be used to add component to a
component to a content as………

Void add(component)

Some important component of swing class are given
below…….

a) Abstract Button :-

Abstract Button is a super class of all swing component.
b) ButtonGroup :-

This class contains mutually exclusive set of buttons(Radio
button).

c) ImageIcon :-

This class contains an Icon.
d) JApplet :-

This class is the swing version of Applet .
e) JButton:-

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

This class is the swing PushButton class .
f) JCheckBox :-

This class is the swing version of checkbox class.
g) JLabel :-

This class is the swing version of label class.
h) JRadioButton :-

This class creates a Radiobutton in a swing .
i) JTextField :-

This class is a swing version of Textfield class.
• Icons & Labels

• Icons :-

In swing icons are encapsulated by ImageIcon class
which paints or draw an icon constructor.

Syntax :-
a. public ImageIcon(String “image_name”);

b. public ImageIcon(URL “ icon _ address”);

• labels:- Swing labels are Instance of Jlabel class

which extends Jcomponent . It can display text or icon

. The constructor used for JLabel class are …..

1) public Jlabel():- This constructer is used for

creating an empty label in swing.

2) public Jlabel(ImageIcon i):- This constructer used

for create a label with it icon i.

3) public Jlabel(String s):- This constructer creates a

label with string s.

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

4) public Jlabel(Strings,ImageIcon I,int align):- The

method used for icon and text associated with label

classes are given below------

(a)ImageIcon getIcon():-This method returns an
image of a label component.

(b)String getText():-This method returns the Text
of a label.

(c)public void setIcon(ImageIcon i):-This method is
used for setting an Icon to Labelcontrol.

Q).Wap to show the use of ImageIcon or Label.

Sol:- import java.awt.*;

 Import java.awt event.*;

 Public SwingLabel extends JApplet

 {

 Public void init()

 {

 Container c= getContent Pane();

 ImageIcon i = new ImageIcon (“xyz.gif”);

 Jlabel l = new Jlabel (“New Label” ,I ,
Jlabel.LEFT);

 c.add();

 }

 }

Applet cde:-

<HTML>

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

<Applet code = “Swinglabel.class” Height =300
Width = 300>

</HTML>

</Applet>

• JRadiobutton :- This JRadio button class creates a set

of Radiobuttons which are grouped using

ButtonGroup class

that enable us to select only one of them at a time .

Some of the constructer of JRadioButton classes are
given below------------

1).public JRadioButton():-This constructor creates
unselected Radiobutton without specifing Text.

2).public JRadioButton(string s):-This constructor
creates unselected Radiobutton without specifing
Text.

3). Public JRadioButton(ImageIcon i):- This
constructor creates unselected RadioButton with
specified Icon i.

4).public JRadioButton(string s ,ImageIcon i) :- This
constructor creates unselected Radiobutton with
specified Text s and specified icon i.

5).public JRadioButton (string s , Boolean state) :-
this constructor creates a Radiobutton with specified
text and state. The Radiobutton is initially selected if
the state is true.

6).public JRadioButton(ImageIcon I , Boolean

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

state) :- This constructor creates a Radiobutton with
specified icon , text , and state. The constructor
creates a buttongroup class used to create a group of
Radiobutton selected one of them .

The default constructor to ButtonGroup () can be
added by using add() of Buttongroup class.

Ques. W.a.p to show the use of Radiobutton .

Sol :- import java . awt. * ;

 import java . awt .Applet .*;

import java .swing .*;

public class Radiodemo extends JApplet

{

 Container c =getContentPane();

 c.setLayout(new FlowLayout ());

JRadioButton b1 = new JRadioButton(“yes”);

 JRadioButton b2 = new JRadioButton(“no”);

c.add(b1);

c.add(b2);

ButtonGroup bg = new ButtonGroup();

bg.add(b1);

bg.add(b2);

}

}

APPLET CODE :-

<Html>

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

<Applet code = “Radiodemo.class” Height = 300 width
= 300>

</Html>

</Applet>
• Menu in Swing (JMenu) :- Swing menu provides the

ability to set menu items (MenuItem) look &feel , the

ability to display menu of an applet . The Awt menu

can be display in a form window . Menu are created

by three classes . These are…………….

 i). JMenuBar
 ii). JMenu
 iii). JMenuItem
 The constructor for creating menu are given below…….
➢ public JMenuBar () :- The default constructor is used to

create a menubar.

➢ public JMenu() :- This constructor is used to design a

menu in swing.

➢ public JMenu (String s) :- This constructor creates a

menu in swing with specified text s.

➢ public JMenu(string s , boolean state) :- This constructor

creates a new menu in specified string and second

argument specified that whether this menu contains

submenu or not.

The item in a swing menu can be created with the help of
JMenuItemClass and the constructor for creating
JMenuItem are given below…………

a. public JMenu Item ():- This constructor creates a

new menu item.

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

b. public Jmenu Item(Image Icon i):- This constructor

creates a menu item with an Icon i.

c. public JMenu Item(string s):- This constructor

creates a menu item with specified string s.

d. public JMenuItem (string s ,ImageIcon i):- This

constructor creates a new menuitem with specified

Text s and Icon i.

Ques. W.a.p to create a menu in swing.

Sol:-import java.awt.*;

 Import javax.swing.*;

 Public class menucreate extends Japplet

 {

 Public void init()

 {

 JMenubar jmb= new JMenubar ();

 JMenu m= new JMenu(“file”);

 JMenu sub=JMenu(“cities”,true);

 m.add(“Delhi”);

 m.add(“Jharkhand”) ;

 m.add(“Bihar”);

 sub.add(“gaya”);

 sub.add(“Patna”);

 m.add (sub);

 jmb.add(m) ;

 setJMenubar (jmb);

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

 }

 }
• Frame:- The frame class is an extention of Awt

frame.A frame is a top level windows that contain

title ,border ,minimize and maximize

button.similarly frames in a swing can be created

with the help of Jframe class.we can not add

component directly to Jframe.we need to add

component to the content pane of Jframe.

The constructor for Jframe class is given below-----

i). public Jframe():- This constructor creates a new
frame that initially invisible.

ii). public Jframe(String s):- This constructor
creates a new frame that initially invisible with the
specified title.

Q. Wap to show the use of Frame and other components
of swing programming.

Sol:- import java.awt.*;

 import java.awt.Swing.*;

 public class framedemo

 {

 Static Jframe f;

 Static JPanel p;

 JLabel lblname,lblid,lblsub,lblmsg,blank,plabel;

 JTextField name , mailed,sub;

 JTextArea msg;

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

 JButton submit ,reset ;

 Gridlayout g;

 Public framedemo()

 {

 g= new gridlayout (5,3);

 p= new JPanel ();

 f= new Jframe (“My frame”);

 f.getcontentpane().add(p);

 p.setlayout (g);

 plabel=new Jlabel (“Information detail”);

 plabel.setfont(new font(“Arial , font.Bold”,20));

 blank= new Jlabel(“ “);

 lblid = new Jlabel(“email”);

 lblname = new Jlabel(“name”);

 lblmsg = new Jlabel(“Message”);

 lblsub = new Jlabel(“Subject”);

 name = new JTextField(20);

 mailid = new JTextField(20);

 sub = new JTextField(20);

 msg = new JTextArea(“ “,3,26);

 submit = new JButton(“submit”);

 reset = new JButton(“Reset”);

 p.add (blank);

 p.add (plabel);

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

 p.add (blank);

 p.add (lblname);

 p.add (blank);

 p.add (name);

 p.add (lblid);

 p.add (blank);

 p.add (mailid);

 p.add (lblmsg);

 p.add (blank);

 p.add (msg);

 p.add (lblsub);

 p.add (blank);

 p.add (sub);

 p.add (blank);

 p.add (submit);

 p.add (reset);

 }

Public Static void main(String arg[])

{

 Frame demo f;

 f = new Framedemo();

 f.getSize(600,600);

 f.setVisible (true);

 }

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

}

Java Beans:- Beans are reusable component written in Java that can be used in varities of

programming environment.Beans work like Active -x control contain—property,method and

Events.Usually Beans are new Java component which have no restriction .

It performs a simple function as well as complex function.

Java Beans is done designed to use application builder tools which is a programming
environment that to bean one such tool is Beanbox (application builder tool).some
microsystem supports Java bean in the Java beans package. A Javabeans existing one of
the following three phases of development-------
1. Construction phase

2. Builder phase

3. Execution phase

The construction phase involves creation of a Java beans. A JavaBeans can`t run by
itself. In order to access its functionality it must be placed inside some other
elements of running Application called the container. A container can be frame
windows or an Applet. The Buildphase involves placing the JavaFields into the
container when the container Application is executed. The JavaBeans enters into the
execution field.

• Advantage of java Beans:-

1. A Beans obtained all the benefits java i.e. write once run anywhere.

2. A Beans may be designed to operate correctly in different location.

3. A Bean may registered to receive events from another object and can generate

events that are same to other object.

• Beans Development kit (BDK):-

BDK is a development tool kit to create consider and test JavaBeans. BDK provide the
support for the Java Application programming Interface (Java Api) that enables to create
JavaBeans component from an Application. Sample JavaBeans available in BDK can be
used directly as component in an Application. The various Advantage of using BDK
development environment to create Java Beans component are given below……

➢ It provides a graphical user Intereface (GUI) to create and text JavaBeans .

➢ It enable us to modify the property of JavaBeans.

➢ It provides a set of sample JavaBean such as…. Juggler Bean, Molecule Bean, Our

Bean, Tick Tock bean, Jelly Bean, Voters Beans

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

THANKING YOU

BCA V Semester Advance Programming in Java

BY- ABHAY KUMAR MISHRA

	Objects and Classes
	Data abstraction and encapsulation
	Inheritance
	Polymorphism
	Features of Java
	Java is Object – Oriented
	Java is Simple
	Java is Safe
	Java is Multi-­‐ threaded
	Java is Platform Independent
	Java is Garbage Collector
	Java is Dynamic and extensive

	extends and super keyword
	Overriding methods
	final instance variable
	final method
	final class
	Finalization method

	Introduction
	How to define interface?
	How to implement interface?
	Example of Interface
	Benefits
	How to use package?
	How to create our own package?
	Access modifier
	Exceptional Handling
	Syntax of Exceptional Handling
	Throws exception objects
	finally Block
	throws Clause
	Creating our own Exception
	How to create a thread?
	Thread class

	How to extends Thread class?
	Runnable Interface

	How to implements Runnable interface?
	Scheduling and Thread priority
	Synchronization
	Other Important topics:
	Applet Programming
	Limitations of Applet
	Applet Life Cycle
	Initialization State:
	Running State:
	Idle or Stopped State:
	Dead State:
	A Sample program
	Passing Parameter to Applet
	< APPLET
	>
	</APPLET>
	What Applets Can and Can't Do
	Applet Capabilities
	CLASSPATH
	Event Handling
	Event Receivers and Listener Interfaces
	How to implement an Event handler
	Inner Classes
	How to use inner classes in Event Handling?
	Adapter Classes
	How to implement adapter classes in Event Handling?
	GUI Programming
	AWT (Abstract Window Toolkit)
	Swing
	How are swing components different from awt components?
	Division of Swing Components
	Containment Hierarchy
	How to add Components in a Panel?
	Layout Manager
	FlowLayout
	BorderLayout
	GridLayout
	GridBagLayout
	BoxLayout

	Design it yourself.
	Input Output Operation
	Streams
	Reading Writing
	Byte Streams
	Character Streams
	Stream Wrappers
	Data Streams
	Buffered streams

	The java.io.File class
	The java.io.RandomAccessFile class
	Serialization
	Java Database Connectivity (JDBC)
	JDBC API Components
	The Driver Layer
	The Application Layer
	Establishing a database connection
	Working with Video
	Working with Graphics
	Rendering
	How to draw different shapes
	Color
	Loading Images
	Some Basic Terminologies
	Network Programming
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	IP Address and Ports
	Clients and Servers
	Stream-­‐based programming
	Datagram-­‐based programming
	Multi-­‐threaded Server
	Distributed Applications
	Data are Distributed
	Computation is Distributed
	Users are Distributed

	Distributed Object Infrastructure
	Introduction to RMI
	Remote Objects and Non-­‐Remote Objects
	RMI Architecture
	Interfaces: The Heart of RMI
	RMI Architecture Layer
	Stub and Skeleton Layer
	Remote Reference Layer
	Transport Layer
	Naming Remote Objects
	rmi://<host_name> [:<name_service_port>] /<service_name>
	Creating Distributed Applications Using RMI

