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1 Rayleigh-Jean's classical theory of blackbody radiation

Rayleigh and Jeans, two British physicists, attempted to explain the blackbody radiation curve theoretically, i.e.
derived a mathematical expression for describing the blackbody radiation intensity I(λ) as function of wavelength
λ at a �xed temperature T. Their mathematical approach was based on classical wave theory, and was partially
successful to reach its goal. However, their theory on blackbody radiation is signi�cantly recognized.

1.1 Derivation: Rayleigh-Jean's law

Consider a cubical blackbody cavity of edge L. The inner wall of the cavity is coated with lamp black. At temperature
T , the atoms and molecules on the inner walls of the cavity oscillate by thermal vibration. We shall call them simply
as `oscillators'. They perform simple harmonic oscillations. Electromagnetic waves (radiations) emit from these
oscillators and get re�ected and re-re�ected on the inner walls of the cavity. These emitted waves along the length
of the cube form standing waves under the condition that

L = n
λ

2

where λ is wavelength of electromagnetic wave and hence λ= 2L
n , where n are nonzero integers (n=1,2,3...etc.). Each

Figure 1: Di�erent radiation modes inside a hot cavity

n value de�nes a particular `mode' of oscillation. Various such modes are shown in �gure 1 where the yellow, blue,
green and dark colored wavefunctions corresponds to n=1,2,3 and 4, respectively. The wavenumber k is de�ned as
k = 2π

λ and therefore may written as

k =
2π
2L
n

=
πn

L
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Considering the three-dimensional cartesian coordinate system, where nx, ny and nz are integers along the x, y and
z direction inside the cavity:

kx =
πnx
Lx

, ky =
πny
Ly

, kz =
πnz
Lz

Since we have considered a cube, Lx=Ly=Lz=L. Therefore,

k2 = k2x + k2y + k2z =
π2(n2x + n2y + n2z)

L2

as, k= 2π
λ

n2 = n2x + n2y + n2z =
k2L2

π2
=

4L2

λ2
(1)

Hence,

n =
2L

λ

di�erentiating

δn = −2L

λ2
δλ (2)

As mentioned earlier, nx, ny and nz are di�erent modes of oscillations. Corresponding to nx, ny and nz, there exist
kx, ky and kz values respectively. If we consider a three dimensional momentum (k) space, its three axes are kx, ky
and kz, respectively. Now, we can transform this k-space into a n-space via rescaling the axes by multiplying them
with Lx

π ,
Ly

π and Lz

π respectively. We may call this n-space as `mode'-space. In �gure 2, such a n-space is shown.

Figure 2: Schematic of a n-space

Within the �rst octant (where nx, ny and nz all are positive), volume of spherical shell in n-space within radius n
and n+δn, i.e. number of modes:

δN =
1

8
4πn2δn

δN =
1

8
4π(n2x + n2y + n2z)δn

using eqn 1 and eqn 2,

δN = −1

8
4π

4L2

λ2
2L

λ2
δλ
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∂N

∂λ
= −4πL3

λ4
(3)

The minus sign indicates that the number of modes decreases with increasing wavelength. Eqn (3) de�nes the number
of modes per unit wavelength. From the principle of equipartition of energy, each standing wave mode has average
energy kBT , where kB is Boltzmann constant (kB=1.38×10−23 J/K), and T is absolute temperature. Therefore, if
E is the energy associated to each mode then,

∂E

∂λ
= −4πkBTL

3

λ4
(4)

The energy density is de�ned as,

δu =
Energy(δE)

V olume(L3)

, Therefore equation eqn (4) may be written as:

∂u

∂λ
=

1

L3

∂E

∂λ
= −4πkBT

λ4
(5)

Now, interesting point to note is that, each oscillator can vibrate horizontally and vertically on the inner surface
of the cavity, creating s-polarized and p-polarized electromagnetic waves. Therefore, the actual number of modes
should be double than counted so far. The energy density should be double than as shown in eqn (5) which will be
modi�ed as,

∂u

∂λ
= −8πkBT

λ4
(6)

Equation (6), is the Rayleigh-Jean's distribution law for blackbody radiation expressing the wavelength λ de-
pendance of energy density u(λ). This distribution law may be expressed in terms of frequency ν. We know, λ= c

ν ,
where c is the velocity of the electromagnetic waves. Di�erentiating,

dλ = − c

ν2
dν

Putting in equation (6),

δu =
8πkBTν

4

c4
c

ν2
dν

∂u

∂ν
=

8πkBTν
4

c4
c

ν2

∂u

∂ν
=

8πkBTν
2

c3
(7)

Equation (7) is the Rayleigh Jean's distribution law, that expresses energy density u as a function of frequency
ν.

2 Rayleigh-Jean's distribution law: Success and Failure

Evidently, Rayleigh Jean's distribution law is very signi�cant while discussing the phenomena of blackbody radiation.
Equation (6) [or (7)] expresses the power law following which the energy density increases with decreasing wavelength
[or, increasing frequency]. In �gure 3, the experimental blackbody energy density distribution u(λ) is shown over a
broad wavelength (λ) range, alongwith the Rayleigh Jean's distribution curve (dashed curve). The curve explains
the distribution spectrum for higher values of λ. Unfortunately, the curve keeps on rising for lower λ values and
therefore fails to produce a �nite value as u(λ) −→∞ for λ −→ 0. This phenomena is called `ultraviolet catastrophe'.
Rayleigh Jean's law is unable to show that the energy density u(λ) of blackbody radiation decreases from the peak
value for smaller λ. Therefore, Rayleigh Jean's law eqn (6) is successful for higher λ-side of the radiation spectrum
and fails for the lower λ-side.
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Figure 3: Rayleigh Jean's distribution function �ts only for higher wavelength side of the blackbody radiation
spectrum.
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