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1 Quantum Approach Towards Blackbody Radiation Theory

1.1 Planck's hypothesis

After the failed attempts of Rayleigh-Jeans and Wien's classical theory to explain the blackbody radiation curve,
Max Planck succeeded in deriving a formula which agrees extremely well with the experimental results. According to
the classical theory of radiation the oscillators (vibrating atoms and molecules on the inner cavity wall) can exchange
(absorb and radiate) energy continuously. Planck discarded the idea of continuity in energy transfer. His assumptions
are:

(A) Energy of each simple harmonic oscillator inside the blackbody radiation chamber may have any series of
discrete values, but not in between i.e. their energies can not have any continuous values.

(B) The oscillators can not radiate energy or absorb energy continuously. However, an oscillator of frequency ν
can only radiate or absorb energy in units of hν, where h is Planck's constant. (h=6.626×10−34J.s) Therefore, if
an oscillator of energy E1 changes its state to energy E2, then the energy radiated by that oscillator is E2-E1=nhν,
where n=1,2,3....etc.

Based on these assumptions, Planck invented the quantum theory of blackbody radiation, which unlocked the door
towards the world of quantum physics.

1.2 Derivation of Planck's law of blackbody radiation

Planck considered that the energy of oscillators have discrete set of values ε, 2ε, 3ε,...nε etc. He considered the
Maxwell-Boltzman energy distribution among the oscillators. Therefore, number of oscillators having energy 0 is N0,
number of oscillators having energy ε is N0e

−ε/kBT , number of oscillators with energy 2ε is N0e
−2ε/kBT and so on.

(Here, kB is the Boltzman constant, kB = 1.38× 10−23 J/K). If the total number of oscillators is N, then we write:

N = N0 +N0e
−ε/kBT +N0e

−2ε/kBT + ...+N0e
−nε/kBT + ... (1)

where, N0e
−nε/kBT is the number of oscillators with energy nε. Putting ε/kBT=x, eqn (1) becomes:

N = N0 +N0e
−x +N0e

−2x +N0e
−3x + ...+N0e

−nx + ... (2)

N =
N0

1− e−x
(3)

If the total energy of all oscillators is E, then:

E = 0×N0 + εN0e
−x + 2εN0e

−2x + 3εN0e
−3x...+ nεN0e

−nx + ... (4)

Multiplying e−x on both sides of eqn(4)

Ee−x = εN0e
−2x + 2εN0e

−3x + 3εN0e
−4x...+ nεN0e

−(n+1)x + ... (5)

subtracting eqn(5)from eqn(4)

E(1− e−x) = εN0e
−x + εN0e

−2x + εN0e
−3x + ... (6)
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E(1− e−x) =
εN0e

−x

1− e−x
(7)

E =
εN0e

−x

(1− e−x)2
(8)

Using eqn (3) and (8), average energy per oscillator is:

ε =
E

N
=

εe−x

1− e−x
=

ε

ex − 1
(9)

According to Planck's hypothesis, the energy quanta associated to each oscillator is ε = hν = hc
λ (since, ν = c

λ ).

Therefore, x = ε
kBT

= hc
λkBT

. Hence,

ε =
hc/λ

ehc/λkBT − 1
(10)

We have seen before, the number of oscillators per unit volume, considering both the horizontal and vertical polar-
ization of radiation, within wavelength range λ to λ + dλ is: 8πλ−4dλ. Hence the energy density (uλ) of radiation
within wavelength range λ to λ+ dλ may be expressed as:

∂uλ
∂λ

=
hc/λ

ehc/λkBT − 1
× 8π

λ4
(11)

∂uλ
∂λ

=
8πhcλ−5

(ehc/λkBT − 1)
(12)

Equation (12) is the Planck's law of blackbody radiation expressed in terms of wavelength λ. This equation can be
written in terms of frequency ν as follows:

∂uν
∂ν

=
8πhν3

c3(e
hν
kBT − 1)

(13)

Equation (13) is the Planck's law of blackbody radiation expressed as a function of frequency ν.

1.3 Derivation of Rayleigh-Jeans' law from Planck's law

Planck's law of blackbody radiation reduces to Rayleigh-Jean's formula at long wavelength limit. For large value of
λ,

ehc/λkBT ≈ 1 + (
hc

λkBT
)

ehc/λkBT − 1 ≈ hc

λkBT

Hence Planck's law (equation 12) reduces to:

∂uλ
∂λ

=
8πhcλ−5

(hc/λkBT )
=

8πkBT

λ4
(14)

which is Rayleigh-Jeans' formula for blackbody radiation.

1.4 Derivation of Wien's distribution law from Planck's law

At small wavelength limit Planck's law of blackbody radiation reduces to Wien's distribution law. If λ has small
value, ehc/λkBT is large compared to 1,

ehc/λkBT � 1

ehc/λkBT − 1 ≈ ehc/λkBT

Therefore equation (12) reduces to:
∂uλ
∂λ

= 8πhcλ−5e−hc/λkBT (15)

Which is Wien's distribution law for blackbody radiation.
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Figure 1:

1.5 Derivation of Wien's displacement law from Planck's law

Equation (12), gives the radiated energy per unit volume per unit wavelength. Let's say:

Sλ =
∂uλ
∂λ

In �gure 1, we have shown a characteristic blackbody radiation spectrum at a �xed temperature T. The peak intensity
is Ipeak or Im. Let's denote the corresponding wavelength as λm. Derivative of Sλ with respect to λ gives slope on
the curve. The slope is zero at peak intensity Im. From eqn (12):

Sλ =
8πhcλ−5

(ehc/λkBT − 1)
(16)

lets say,
hc

kB
= a(constant)

Di�erentiating Sλ with respect to λ:
dSλ
dλ

=
d

dλ
[

1

λ5(ea/λT − 1)
] (17)

Therefore,
dSλ
dλ

= [
−5

λ6(ea/λT − 1)
+

1

λ5
−e(a/λT ) a

T
−1
λ2

(ea/λT − 1)2
] (18)

So,
dSλ
dλ

=
1

λ5(ea/λT − 1)
[
−5

λ
+

ea/λT a
λT 2

(ea/λT − 1)
] (19)

Equating the slope dSλ
dλ to zero, and putting λ = λm we get:

ea/λmT
a

λ2mT
=

5

λm
(ea/λmT − 1) (20)

λmT =
aea/λmT

5(ea/λmT − 1)
=

a

5(1− e−a/λmT )
(21)

This equation can not be solved analytically, but may be solved numerically which gives: λmT=2.89×10−3m.K.
(constant). Which proves Wien's displacement law.
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